元素

相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。

一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )

例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。

现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。

\(N≤1000,\mathrm{Number}_i ≤10^{18},\mathrm{Magic}_i ≤10^4\)

题解

把矿石按法力排序后从大到小贪心,考虑如何维护异或和不为0。

线性基满足该条件,用线性基维护,序号能insert就加上法力。

#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#pragma GCC optimize ("O0")
using namespace std;
template<class T> inline T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff; const int MAXB=64;
struct LB
{
ll d[MAXB]; bool insert(ll x)
{
for(int i=MAXB-1;i>=0;--i)
if(x&(1LL<<i))
{
if(!d[i])
{
d[i]=x;
break;
}
x^=d[i];
}
return x>0;
}
}T; const int MAXN=1e3+7;
struct node
{
ll x,y;
}p[MAXN]; int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n;
read(n);
for(int i=1;i<=n;++i)
{
read(p[i].x);read(p[i].y);
}
sort(p+1,p+n+1,[] (const node&a,const node&b) { return a.y>b.y; });
ll ans=0;
for(int i=1;i<=n;++i)
{
if(T.insert(p[i].x))
ans+=p[i].y;
}
printf("%lld\n",ans);
// fclose(stdin);
// fclose(stdout);
return 0;
}

BZOJ2460,LG4570 [BJWC2011]元素的更多相关文章

  1. 线性基【p4570】 [BJWC2011]元素

    题目描述-->p4570 [BJWC2011]元素 题目大意 给定一些矿石的编号与价值,我们想要得到最大的价值和,并且选定物品的编号异或之和不为0. 分析 线性基就不多bb了,来这里->p ...

  2. 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基

    [BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...

  3. 【题解】P4570 [BJWC2011]元素 - 线性基 - 贪心

    P4570 [BJWC2011]元素 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 给你 \(n\) 个二元组 \( ...

  4. BZOJ2460:[BJWC2011]元素(贪心,线性基)

    Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越 ...

  5. 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 839  Solved: 490[Submit][Stat ...

  6. 【bzoj2460】 BeiJing2011—元素

    www.lydsy.com/JudgeOnline/problem.php?id=2460 (题目链接) 题意 n个二元组(a,b),求一个∑b最大,且所有子集XOR<>0的集合 Solu ...

  7. 【bzoj2460】[BeiJing2011]元素

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 692  Solved: 372[Submit][Statu ...

  8. 洛谷 P4570 BZOJ 2460 [BJWC2011]元素

    Time limit 20000 ms Memory limit 131072 kB OS Linux 解题思路 看题解可知 我们将矿石按照魔法值降序排序,然后依次将矿石编号放入线性基(突然想起线代里 ...

  9. [BJWC2011]元素

    嘟嘟嘟 题中说选的数的编号亦或和不能为0,也就是在这个集合中,不能用不同的选取方案亦或出相同的值.由此联想到线性基的一个性质是,每一个数都能由线性基中特定的一些数亦或得到. 所以我们就是要求出这些数的 ...

随机推荐

  1. springboot 解决 The bean 'userRepository', defined in null, could not be registered. A bean with that name has already been defined in file XXX and overriding is disabled.

    1.springboot 启动时报错: 2019-02-20 14:59:58.226 INFO 10092 --- [ main] c.f.s.SpringbootssmApplication : ...

  2. 笔试题-sql语句

    今天遇到了不熟练(不会)的查询题目 回来自己又做了一下,如下 建表语句 -- Table structure for score -- ---------------------------- DRO ...

  3. spring boot: GlobalDefaultExceptionHandler方法内的友好错误提示,全局异常捕获

    spring boot: GlobalDefaultExceptionHandler方法内的友好错误提示,全局异常捕获 当你的某个控制器内的某个方法报错,基本上回显示出java错误代码,非常不友好,这 ...

  4. php--------删除数组的第一个元素和最后一个元素

    对于一个php数组,该如何删除该数组的第一个元素或者最后一个元素呢?其实这两个过程都可以通过php自带的函数 array_pop 和 array_shift 来完成,下面就具体介绍一下如何来操作. ( ...

  5. .net 环境配置

    需要把安装中文包也安装上.4个都安装

  6. 小议常被忽略的a标签:visited属性的特殊用法

    CSS1/CSS2对于a定义了4个伪类, :link  a标签未访问时的样式 :active  a标签mousedown时的样式 :hover  a标签mouseover时的样式 :visited  ...

  7. vs2012修改代码编辑区域的背景色

  8. 【转】C# 生成二维码并且在中间加Logo(图片合并)

    public class QRCodeHelper { public static Bitmap GetThumbnail(Bitmap b, int destHeight, int destWidt ...

  9. 等待进程结束wait,waitpid

    当子进程先于父进程退出时,如果父进程没有调用wait和waitpid函数,子进程就会进入僵死状态. pid_t wait(int *status); pid_t waitpid(pid_t pid, ...

  10. 安装淘宝cnpm镜像

    $ npm install -g cnpm --registry=https://registry.npm.taobao.org