方案一(使用ForeachWriter Sink方式):

val query = wordCounts.writeStream.trigger(ProcessingTime(5.seconds))
.outputMode("complete")
.foreach(new ForeachWriter[Row] {
var fileWriter: FileWriter = _ override def process(value: Row): Unit = {
fileWriter.append(value.toSeq.mkString(","))
} override def close(errorOrNull: Throwable): Unit = {
fileWriter.close()
} override def open(partitionId: Long, version: Long): Boolean = {
FileUtils.forceMkdir(new File(s"/tmp/example/${partitionId}"))
fileWriter = new FileWriter(new File(s"/tmp/example/${partitionId}/temp"))
true
}
}).start()

方案二(ds.writeStream().partitionBy("field")):

import org.apache.spark.sql.streaming.ProcessingTime

val query =
streamingSelectDF
.writeStream
.format("parquet")
.option("path", "/mnt/sample/test-data")
.option("checkpointLocation", "/mnt/sample/check")
.partitionBy("zip", "day")
.trigger(ProcessingTime("25 seconds"))
.start()

java代码:

        // Write new data to Parquet files
// can be "orc", "json", "csv", etc.
String hdfsFileFormat = SparkHelper.getInstance().getLTEBaseSaveHdfsFileFormat();
String queryName = "save" + this.getTopicEncodeName(topicName) + "DataToHdfs";
String saveHdfsPath = SparkHelper.getInstance().getLTEBaseSaveHdfsPath();
// The file path which partitioned by scan_start_time (format:yyyyMMddHH0000)
dsParsed.writeStream()
.format(hdfsFileFormat)
.option("path", saveHdfsPath + topicName + "/")
.option("checkpointLocation", this.checkPointPath + queryName + "/")
.outputMode("append")
.partitionBy("scan_start_time")
.trigger(Trigger.ProcessingTime(5, TimeUnit.MINUTES))
.start();

更多方式,请参考《在Spark结构化流readStream、writeStream 输入输出,及过程ETL

Spark Structured Streaming:将数据落地按照数据字段进行分区方案的更多相关文章

  1. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十九):推送avro格式数据到topic,并使用spark structured streaming接收topic解析avro数据

    推送avro格式数据到topic 源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/j ...

  2. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  3. Spark Structured Streaming框架(3)之数据输出源详解

    Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单 ...

  4. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  5. Spark Structured streaming框架(1)之基本使用

     Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streamin ...

  6. Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

    背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...

  7. Spark2.2(三十八):Spark Structured Streaming2.4之前版本使用agg和dropduplication消耗内存比较多的问题(Memory issue with spark structured streaming)调研

    在spark中<Memory usage of state in Spark Structured Streaming>讲解Spark内存分配情况,以及提到了HDFSBackedState ...

  8. Spark2.3(三十五)Spark Structured Streaming源代码剖析(从CSDN和Github中看到别人分析的源代码的文章值得收藏)

    从CSDN中读取到关于spark structured streaming源代码分析不错的几篇文章 spark源码分析--事件总线LiveListenerBus spark事件总线的核心是LiveLi ...

  9. Spark2.3(三十四):Spark Structured Streaming之withWaterMark和windows窗口是否可以实现最近一小时统计

    WaterMark除了可以限定来迟数据范围,是否可以实现最近一小时统计? WaterMark目的用来限定参数计算数据的范围:比如当前计算数据内max timestamp是12::00,waterMar ...

  10. DataFlow编程模型与Spark Structured streaming

    流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...

随机推荐

  1. springmvc.xml 上传文件的配置

    <bean id="multipartResolver" class="org.springframework.web.multipart.commons.Comm ...

  2. JAVA泛型中的有界类型(extends super)(转)

    JDK1.5中引入了泛型(Generic)机制.泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以用在类.接口和方法的创建中,分别称为泛型类.泛型接口.泛型方法. Ja ...

  3. ARM JTAG 20P to Cortex JTAG 10P

  4. STM32F4 External interrupts

    STM32F4 External interrupts Each STM32F4 device has 23 external interrupt or event sources. They are ...

  5. deeplearningbook-chinese

    https://exacity.github.io/deeplearningbook-chinese/

  6. jstat命令 -- Java虚拟机监控统计工具

    http://blog.sina.com.cn/s/blog_5f5716580100u76r.html 语法:jstat [generalOption | outputOptions vmid [i ...

  7. MyEclipse10安装Log4E插件

    一. Log4E插件下载 下载地址:http://log4e.jayefem.de/content/view/3/2/ 二.安装Log4E插件 将下载下来的压缩包解压缩,如下图所示: 解压缩生成的[d ...

  8. jeffy-vim-v3.2

    jeffy-vim-v3.2 增加了vim-gutentags 插件,支持tags自动生成.

  9. 写一个限制上传文件大小和格式的jQuery插件

    在客户端上传文件,通常需要限制文件的尺寸和格式,最常用的做法是使用某款插件,一些成熟的插件的确界面好看,且功能强大,但美中不足的是:有时候会碰到浏览器兼容问题.本篇就来写一个"原生态&quo ...

  10. 利用进程ID获取主线程ID

    利用进程ID获取主线程ID,仅适用于单线程.多线程应区分哪个是主线程,区分方法待验证 (1)好像可以用StartTime最早的,不过通过线程执行时间不一定可靠,要是在最开始就CreateThread了 ...