题目链接:https://vjudge.net/problem/UVA-10976

It is easy to see that for every fraction in the form 1k(k > 0), we can always find two positive integers x and y, x ≥ y, such that:

1/k=1/x+1/y

Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k?

Input

Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000).

Output

For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.

Sample Input

2

12

Sample Output

2

1/2 = 1/6 + 1/3

1/2 = 1/4 + 1/4

8

1/12 = 1/156 + 1/13

1/12 = 1/84 + 1/14

1/12 = 1/60 + 1/15

1/12 = 1/48 + 1/16

1/12 = 1/36 + 1/18

1/12 = 1/30 + 1/20

1/12 = 1/28 + 1/21

1/12 = 1/24 + 1/24

题意概述:输入正整数k,找到所有的正整数x≥y,使得1/k=1/x+1/y;

解题思路:既然要求找出所有的x、y,枚举对象自然就是x、y了。可问题在于,枚举的范围如何? 从1/12=1/156+1/13可以看出,x可以比y大很多。难道要无休止地枚举下去?当然不是。因为1/k=1/x+1/y,所以1/k>1/y,所以y>k;又因为x>=y,所以1/x≤1/y,且1/k=1/x+1/y,所以1/k-1/y≤1/y,得y≤2k;这样,只需要在k+1到2k范围之内枚举y,然后根据y尝试 计算出x即可,因为1/k=1/x+1/y,得x=ky/(y-k)。暴力枚举也需要进行数学推倒可以大大缩小枚举的范围。

代码如下:

#include<iostream>
using namespace std;
const int maxn=;
int ansx[maxn],ansy[maxn];
int main()
{
int k;
int cnt;
while(cin>>k)
{
cnt=;
for(int j=k+;j<=*k;j++)
{
if((k*j)%(j-k)==&&k*j/(j-k)>=j)
{
ansx[cnt]=k*j/(j-k);
ansy[cnt]=j;
cnt++;
}
}
cout<<cnt<<endl;
for(int i=;i<cnt;i++)
{
cout<<"1/"<<k<<"=1/"<<ansx[i]<<"+1/"<<ansy[i]<<endl;
}
}
return ;
}

分数拆分(Fractions Again?!, UVa 10976)的更多相关文章

  1. Fractions Again?! UVA - 10976

    It is easy to see that for every fraction in the form 1k(k > 0), we can always find two positive ...

  2. UVA10976 分数拆分 Fractions Again?! 题解

    Content 给定正整数 \(k\),找到所有的正整数 \(x \geqslant y\),使得 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\). 数据范围:\(0& ...

  3. 暴力枚举 UVA 10976 Fractions Again?!

    题目传送门 /* x>=y, 1/x <= 1/y, 因此1/k - 1/y <= 1/y, 即y <= 2*k */ #include <cstdio> #inc ...

  4. 洛谷P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...

  5. NYOJ 66 分数拆分

    分数拆分 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输入 第一行输入一个 ...

  6. UVA 725 UVA 10976 简单枚举

    UVA 725 题意:0~9十个数组成两个5位数(或0开头的四位数),要求两数之商等于输入的数据n.abcde/fghij=n. 思路:暴力枚举,枚举fghij的情况算出abcde判断是否符合题目条件 ...

  7. 洛谷——P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  8. nyoj_66_分数拆分_201312012122

    分数拆分 时间限制:3000 ms  |           内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输 ...

  9. 洛谷 P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

随机推荐

  1. 限流——spring-cloud-zuul-ratelimit

    先留个坑,慢慢补 git代码Demo:https://github.com/islowcity/spring-cloud-zuul-ratelimiter.git 有时间再写分析

  2. docker部署rabbitMQ

    获取rabbit镜像: docker pull rabbitmq:management 创建并运行容器: docker run -d --hostname my-rabbit --name rabbi ...

  3. Daily Scrumming* 2015.12.20(Day 12)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1090 https://github.com/buaaclubs-team/temp-front/com ...

  4. [ERROR] Failed to execute goal org.codehaus.mojo:gwt-maven-plugin:2.5.0-rc1:compile (default) on project zeus-web: Command 解决

    在编译maven项目,打包maven packeage -Dmaven.test.skip=TRUE时,报错“[ERROR] Failed to execute goal org.codehaus.m ...

  5. 结对项目 https://github.com/quchengyu/jiedui/tree/quchengyu-patch-1

    所选项目名称:文本替换      结对人:傅艺伟 github地址 : https://github.com/quchengyu/jiedui/tree/quchengyu-patch-1 用一个新字 ...

  6. Maven入门系列(一):Eclipse中使用Maven

    Maven下载和安装 在使用Maven之前首先先要下载Mavne的免安装包,下载地址:http://maven.apache.org/download.cgi 想看源码的可以下载src版本,使用的下载 ...

  7. vue 项目引入字体报错

    vue 项目引入特殊字体,总是提示有问题 原因是,在webpack 里面的配置有问题 在项目文件里面引入字体的时候,应该写url-loader 而不能是url

  8. Maven+SSM整合.doc

    Maven + SSM整合 1开发环境搭建 1.1Eclipse4.7(Oxygen) + Tomcat8 + Maven3.5.2 2Maven Web项目创建 2.1新建maven项目 2.2 选 ...

  9. Integrating Jenkins and Apache Tomcat for Continuous Deployment

    Installation via Maven WAR Overlay - Jenkins - Jenkins Wikihttps://wiki.jenkins.io/display/JENKINS/I ...

  10. 在保存Bitmap的时候出现“GDI出现一般性错误”

    今天开发的时候出现过一个非常奇怪的问题,在保存最终的Bitmap图片的时候,明明使用Directory.Exist(filePath)函数判断当前路径的时候,这些路径都是有用的并且都是合法的,但是就是 ...