前言
  这个问题源自于,我想找一个分布式下的ID生成器。
  这个最简单的方案是,数据库自增ID。为啥不用咧?有这么几点原因,一是,会依赖于数据库的具体实现,比如,mysql有自增,oracle没有,得用序列,mongo似乎也没有他自己有个什么ID,sqlserver貌似有自增等等,有些不稳定因素,因为ID生成是业务的核心基础。当然,还有就是性能,自增ID是连续的,它就依赖于数据库自身的锁,所以数据库就有瓶颈。当然了,多台数据库加某种间隔也是可用的,但是,运维维护会很复杂,因为它不是内聚的解决方案。而且,很难提前获得下一个ID。
  后来,我用过一段时间在数据库表里进行记录来进行自增。这个的优势是,我可以提前获得下一个ID,而且,某个进程里可以一次获取一批,减少锁的依赖,虽然进程间的不重复依然是基于数据库事务隔离的,但是,依赖小了,瓶颈小了。这个方案其实挺好的,我依然也会继续用,主要是,它可以生成数字字母混合的编剧号,而且基本可控。但是,我数据库主键为了效率和空间成本,基本会选用long,基本顺序生成就可以了,所以,使用这种带持久化的方案,会显得很重。起项目的时候,也是,需要先建立对应的表,然后再把代码或者jar包引进去,然后再用,比较重。最好就是能够直接生成,没有那么多依赖。
  然后,我从我上司那里听到了twitter的这个算法。其实,我上司有个实现,我这个就是基于他的改的,但是,他的有两个值是配置的,我还是嫌麻烦,于是就动手把那两个值变成了从机器与进程获取,就有了这个版本。

思路
  说实话,我也就听了这么个算法的名字,没正经看过原算法,但是,我上司说他代码是网上抄的,所以,这个算法名字我还是不敢丢,下面我们说说整体的思路。
  整个ID的构成大概分为这么几个部分,时间戳差值,机器编码,进程编码,序列号。java的long是64位的从左向右依次介绍是:时间戳差值,在我们这里占了42位;机器编码5位;进程编码5位;序列号12位。所有的拼接用位运算拼接起来,于是就基本做到了每个进程中不会重复了。

代码

package nature.framework.core.common;

import java.lang.management.ManagementFactory;
import java.lang.management.RuntimeMXBean;
import java.net.NetworkInterface;
import java.net.SocketException;
import java.util.Enumeration; /**
* 主键生成器
*
* @author nature
* @create 2017-12-22 10:58
*/
public class KeyWorker {
private final static long twepoch = 12888349746579L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L; // 毫秒内自增位数
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//sequence掩码,确保sequnce不会超出上限
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
//上次时间戳
private static long lastTimestamp = -1L;
//序列
private long sequence = 0L;
//服务器ID
private long workerId = 1L;
private static long workerMask= -1L ^ (-1L << workerIdBits);
//进程编码
private long processId = 1L;
private static long processMask=-1L ^ (-1L << datacenterIdBits);
private static KeyWorker keyWorker = null; static{
keyWorker=new KeyWorker();
}
public static synchronized long nextId(){
return keyWorker.getNextId();
} private KeyWorker() { //获取机器编码
this.workerId=this.getMachineNum();
//获取进程编码
RuntimeMXBean runtimeMXBean = ManagementFactory.getRuntimeMXBean();
this.processId=Long.valueOf(runtimeMXBean.getName().split("@")[0]).longValue(); //避免编码超出最大值
this.workerId=workerId & workerMask;
this.processId=processId & processMask;
} public synchronized long getNextId() {
//获取时间戳
long timestamp = timeGen();
//如果时间戳小于上次时间戳则报错
if (timestamp < lastTimestamp) {
try {
throw new Exception("Clock moved backwards. Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");
} catch (Exception e) {
e.printStackTrace();
}
}
//如果时间戳与上次时间戳相同
if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1,与sequenceMask确保sequence不会超出上限
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift) | (processId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
return nextId;
} /**
* 再次获取时间戳直到获取的时间戳与现有的不同
* @param lastTimestamp
* @return 下一个时间戳
*/
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} /**
* 获取机器编码
* @return
*/
private long getMachineNum(){
long machinePiece;
StringBuilder sb = new StringBuilder();
Enumeration<NetworkInterface> e = null;
try {
e = NetworkInterface.getNetworkInterfaces();
} catch (SocketException e1) {
e1.printStackTrace();
}
while (e.hasMoreElements()) {
NetworkInterface ni = e.nextElement();
sb.append(ni.toString());
}
machinePiece = sb.toString().hashCode();
return machinePiece;
}
}

  

代码解读
整体设计
  为了最大程度的减少配置,方便实用,这个模块,我设计成了单例模式。之所以没有直接使用static方法,还是希望可以控制整个模块的生命周期,但是,模块的初始化,我使用了static块,因为它没有任何依赖。
  有个static的nextId方法,可以直接获得下一个ID,这个方法是线程安全的。同时这个模块的使用就是这么简单粗暴,也不用配置bean。

ID生成逻辑
  我们先看最后一步:long nextId = ((timestamp - twepoch) << timestampLeftShift) | (processId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
  这句话什么意思呢?
  timestamp - twepoch:时间戳减去一个时间戳,获得一个差值。
  ((timestamp - twepoch) << timestampLeftShift):timestampLeftShift是22,这个操作是将这个差值向左移22位,左移空出来的会自动补0,我们就有了22位的空间了。
  后面可以看到三个|符号,与操作会把1都加进来,而我们后面的数也都在各自的位上才有1,那么|操作就把这些数合进来了。
  (processId << datacenterIdShift):进程编码左移datacenterIdShift,这个是17位,而processId最多是5位,于是刚好填满空位
  (workerId << workerIdShift):与进程编码类似,机器编码也是5位,左移12位
  sequence最大12位。

如何确保不超出位数限制
  前面的逻辑中,我们说了很多不超出位数限制啥的内容,那么,具体是怎么做到的呢?我们拿workerId举个例子:
  this.workerId=workerId & workerMask;
  这是我们确保workerId不超过5位的语句,什么意思呢?不经常操作位运算真看不懂。我们先看看workerMask是啥。
  private static long workerMask= -1L ^ (-1L << workerIdBits);
  。。。什么意思呀?它先执行的是-1L << workerIdBits,workerIdBits是5。这又是什么意思呢?注意,这是位运算,long用的是补码,-1L,就是64个1,这里使用-1是为了格式化所有位数,<<是左移运算,-1L左移五位,低位补零,也就是左移空出来的会自动补0,于是就低位五位是0,其余是1。然后^这个符号,是异或,也是位运算,位上相同则为0,不通则为1,和-1做异或,则把所有的0和1颠倒了一下。这时候,我们再看,workerId & workerMask,与操作,两个位上都为1的才能唯一,否则为零,workerMask高位都是0,所以,不管workerId高位是什么,都是0,;而workerMask低位都是1,所以,不管workerId低位是什么,都会被保留,于是,我们就控制了workerId的范围。

最后的异常
  这里,时间戳,保证了不通毫秒不同,然后机器编码进程编码保证了不同进程不通,再然后,序列,在统一毫秒内,如果获取第二个ID,则序列号+1,到下一毫秒后重置。至此,唯一性ok。但是,还有问题,序列号用完了怎么办?代码里的解决方案是,等到下一毫秒。

补充
  其实,这个方案中,机器码和进程编码是可能相同的,只是概率比较小,我们就凑合着用吧。如果有更好地获取这两位的方式,欢迎沟通。

Twitter的雪花算法(snowflake)自增ID的更多相关文章

  1. 一个类似 Twitter 雪花算法 的 连续序号 ID 产生器 SeqIDGenerator

    项目地址 :     https://github.com/kelin-xycs/SeqIDGenerator 今天 QQ 群 里有网友问起产生唯一 ID 的方法 有哪些,  讨论了各种方法 . 有网 ...

  2. 雪花算法-snowflake

    雪花算法-snowflake 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有 ...

  3. 基于雪花算法的增强版ID生成器

    sequence 基于雪花算法的增强版ID生成器 解决了时间回拨的问题 无需手动指定workId, 微服务环境自适应 可配置化 快速开始 依赖引入 <dependency> <gro ...

  4. 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)

    一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...

  5. 一秒可生成500万ID的分布式自增ID算法—雪花算法 (Snowflake,Delphi 版)

    概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...

  6. Twitter雪花算法 SnowFlake算法 的java实现

    概述 SnowFlake算法是Twitter设计的一个可以在分布式系统中生成唯一的ID的算法,它可以满足Twitter每秒上万条消息ID分配的请求,这些消息ID是唯一的且有大致的递增顺序. 原理 Sn ...

  7. 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake

    分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...

  8. 分布式唯一ID生成方案选型!详细解析雪花算法Snowflake

    分布式唯一ID 使用RocketMQ时,需要使用到分布式唯一ID 消息可能会发生重复,所以要在消费端做幂等性,为了达到业务的幂等性,生产者必须要有一个唯一ID, 需要满足以下条件: 同一业务场景要全局 ...

  9. 雪花算法生成全局唯一ID

    系统中某些场景少不了全局唯一ID的使用,来保证数据的唯一性.除了通过数据库自带的自增id来保证 id 的唯一性,通常为了保证的数据的可移植性会选择通过程序生成全局唯一 id.百度了不少php相关的生成 ...

随机推荐

  1. JQuery 获取select被选中的value和text

    html代码: <select name="test" > <option value="0">请选择</option> & ...

  2. mapping values are not allowed in this context at line 115 column 10

    /opt/vagrant/embedded/lib/ruby//psych.rb::in `parse': (<unknown>): mapping values are not allo ...

  3. fiddler修改response header

    if(oSession.host.Contains("baidu.com")){//根据host判断 oSession.RequestHeaders.Remove("Ac ...

  4. 通过cookie记录,设置页面访问的跳转页

    通过cookie记录,设置页面访问的跳转页 转载自:http://blog.csdn.net/yixiao_naihe/article/details/26679515. 目的: 1.访问fm.htm ...

  5. django学习之——Model

    打开 settings.py 找到 DATABASE  配置我们的数据库,(MySQL) # Database # https://docs.djangoproject.com/en/1.7/ref/ ...

  6. teamview修改id

     怎么修改 TeamViewer ID 呢?按照下列的操作步骤,就能很简单的改变TeamViewer的id哦!1. 开始 > 运行,录入%appdata%,删除TeamViewer的文件夹: ...

  7. cocos2d-x js 中创建node的方法

    1.精灵Sprite 一共4种创建方式 (1) 根据图片资源路径创建 1 2 3 4 //参数1:图片资源路径 var sprite1 = cc.Sprite.create("res/zif ...

  8. JavaScript 中repalce的使用

    把Paul Pauline pual Paula Paul中的Paul替换成Ringo <!DOCTYPE html> <html> <body> <butt ...

  9. ADO.NET之SqlConnection、sqlcommand的应用(学习笔记)

    一.知识描述点 1.SqlConnection (1)使用SqlConnection类可以连接到SQL Server数据库.SqlConnection对象的主要属性和方法如下: ——属性:Connec ...

  10. Hadoop & Spark

    Hadoop & Spark 概述 Apache Hadoop 是一种通过服务集群并使用MapReduce编程数据模型完成大数据的分布式处理框架,核心模块包括:MapReduce,Hadoop ...