BZOJ5334 [TJOI2018] 数学计算 【线段树分治】
题目分析:
大概是考场上的签到题。首先mod不是质数,所以不能求逆元。注意到有加入操作和删除操作。一个很典型的想法就是线段树分治。建立时间线段树然后只更改有影响的节点,最后把所有标记下传。时间复杂度是O(nlogn)。
代码:
#include<bits/stdc++.h>
using namespace std; int q,mod; int data[];
struct node{int l,r,d;}p[]; void read(){
memset(p,,sizeof(p));
memset(data,,sizeof(data));
scanf("%d%d",&q,&mod);
for(int i=;i<=q;i++){
int cas; scanf("%d",&cas);
int x; scanf("%d",&x);
if(cas == ){
p[i].l = i;p[i].d = x;
}else{p[x].r = i;}
}
} void add(int now,int tl,int tr,int l,int r,int d){
if(tl >= l && tr <= r){
data[now] = (1ll*data[now]*d)%mod;
return;
}
if(tl > r || tr < l) return;
int mid = (tl+tr)/;
add(now<<,tl,mid,l,r,d);
add(now<<|,mid+,tr,l,r,d);
} void dfs(int now,int tl,int tr){
if(tl == tr){printf("%d\n",data[now]);return;}
int L = now*,R = now*+;
data[L] = (1ll*data[L]*data[now])%mod;
data[R] = (1ll*data[R]*data[now])%mod;
data[now] = ;int mid =(tl+tr)/;
dfs(L,tl,mid); dfs(R,mid+,tr);
} void work(){
for(int i=;i<=*q;i++) data[i] = ;
for(int i=;i<=q;i++){
if(p[i].l == ) continue;
if(p[i].r == ) add(,,q,p[i].l,q,p[i].d);
else add(,,q,p[i].l,p[i].r-,p[i].d);
}
dfs(,,q);
} int main(){
int t; scanf("%d",&t);
while(t--){
read();
work();
}
return ;
}
BZOJ5334 [TJOI2018] 数学计算 【线段树分治】的更多相关文章
- BZOJ5334:[TJOI2018]数学计算(线段树)
Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 1 m: x = x * m ,输出 x%mod; 2 pos: x = x / 第pos次操作所乘 ...
- 洛谷P4588 [TJOI2018]数学计算(线段树)
题意 题目链接 Sol TJOI怎么全是板子题 对时间开个线段树,然后就随便做了.... #include<bits/stdc++.h> using namespace std; cons ...
- [TJOI2018]数学计算 线段树
---题面--- 题解: ,,,考场上看到这题,没想到竟然是省选原题QAQ,考场上把它当数学题想了好久,因为不知道怎么处理有些数没有逆元的问题....知道这是线段树后恍然大悟. 首先可以一开始就建出一 ...
- BZOJ5334: [Tjoi2018]数学计算
BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...
- [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)
模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...
- 【BZOJ5334】数学计算(线段树)
[BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...
- [Tjoi2018]数学计算
[Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...
- 【luogu3733】【HAOI2017】 八纵八横 (线段树分治+线性基)
Descroption 原题链接 给你一个\(n\)个点的图,有重边有自环保证连通,最开始有\(m\)条固定的边,要求你支持加边删边改边(均不涉及最初的\(m\)条边),每一次操作都求出图中经过\(1 ...
- 线段树分治总结(线段树分治,线段树,并查集,树的dfn序,二分图染色)
闲话 stO猫锟学长,满脑子神仙DS 网上有不少Dalao把线段树分治也归入CDQ分治? 还是听听YCB巨佬的介绍: 狭义:只计算左边对右边的贡献. 广义:只计算外部对内部的贡献. 看来可以理解为广义 ...
随机推荐
- Recurrent Neural Network[CTC]
0. 背景 1. CTC原理 图 CTC结构图 CTC是看似和HMM有些联系,然后也采用DP来进行求解,将CTC结构图中<RNN输出,CTC层>单独拿出来,得到如下形式: 图 用前向-后向 ...
- Django学习篇(第二部)
4.Django pip3 install django C:\Python35\Scripts # 创建Django工程 django-admin startproject [工程名称] mysit ...
- UVA10720 Graph Construction 度序列可图性
Luogu传送门(UVA常年上不去) 题意:求一个度序列是否可变换为一个简单图.$\text{序列长度} \leq 10000$ 题目看起来很简单,但是还是有一些小细节需要注意首先一个简单的结论:一张 ...
- zookeepeer使用zkCli.sh命令
一.连接服务器端 [root@sxl132 zookeepeer]# ./bin/zkCli. Connecting to -- ::, [myid:] - INFO [main:Environmen ...
- C# 套接字编程:Scoket,我用Scoket做的C# Windows应用程序如下:
首先请允许我做一个截图: 以上,是我服务端设计 我们知道:服务器端口数最大可以有65535个,但是实际上常用的端口才几十个,由此可以看出未定义的端口相当多.因此,我们可以通过程序随机获取一个当前可用的 ...
- GBDT和随机森林的区别
GBDT和随机森林的相同点: 1.都是由多棵树组成 2.最终的结果都是由多棵树一起决定 GBDT和随机森林的不同点: 1.组成随机森林的树可以是分类树,也可以是回归树:而GBDT只由回归树组成 2.组 ...
- SAAS云平台搭建札记: (二) Linux Ubutu下.Net Core整套运行环境的搭建
最近做的项目,由于预算有限,公司决定不采购Windows服务器,而采购基于Linux的服务器. 一般的VPS服务器,如果使用Windows系统,那么Windows Server2012\2016安装好 ...
- MongoDB日常运维操作命令小结
总所周知,MongoDB是一个NoSQL非数据库系统,即一个数据库可以包含多个集合(Collection),每个集合对应于关系数据库中的表:而每个集合中可以存储一组由列标识的记录,列是可以自由定义的, ...
- Centos6.8下编译安装LAMP的操作记录梳理
之前用的最多的web框架是LNMP,偶尔也会用到LAMP.接下来简单说下LAMP环境的部署记录,这里选择源码安装的方式: LAMP相关安装包下载地址:https://pan.baidu.com/s/1 ...
- 一个数据表通过另一个表更新数据(在UPDAT语句中使用FROM子句)
在sql server中,update可以根据一个表的信息去更新另一个表的信息. 首先看一下语法: update A SET 字段1=B表字段表达式, 字段2=B表字段表达式 from B WHE ...