许多分布式计算系统都可以实时或接近实时地处理大数据流。本文将对三种Apache框架分别进行简单介绍,然后尝试快速、高度概述其异同。

Apache Storm

在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology)。这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行。一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去;而bolt则负责转换这些数据流,在bolt中可以完成计算、过滤等操作,bolt自身也可以随机将数据发送给其他bolt。由spout发射出的tuple是不可变数组,对应着固定的键值对。

Apache Spark

Spark Streaming是核心Spark API的一个扩展,它并不会像Storm那样一次一个地处理数据流,而是在处理前按时间间隔预先将其切分为一段一段的批处理作业。Spark针对持续性数据流的抽象称为DStream(DiscretizedStream),一个DStream是一个微批处理(micro-batching)的RDD(弹性分布式数据集);而RDD则是一种分布式数据集,能够以两种方式并行运作,分别是任意函数和滑动窗口数据的转换。

Apache Samza

Samza处理数据流时,会分别按次处理每条收到的消息。Samza的流单位既不是元组,也不是Dstream,而是一条条消息。在Samza中,数据流被切分开来,每个部分都由一组只读消息的有序数列构成,而这些消息每条都有一个特定的ID(offset)。该系统还支持批处理,即逐次处理同一个数据流分区的多条消息。Samza的执行与数据流模块都是可插拔式的,尽管Samza的特色是依赖Hadoop的Yarn(另一种资源调度器)和Apache Kafka

共同之处

以上三种实时计算系统都是开源的分布式系统,具有低延迟、可扩展和容错性诸多优点,它们的共同特色在于:允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行运行。此外,它们都提供了简单的API来简化底层实现的复杂程度。

三种框架的术语名词不同,但是其代表的概念十分相似:

对比图

下面表格总结了一些不同之处

数据传递形式

最多一次(At-most-once):消息可能会丢失,这通常是最不理想的结果。

最少一次(At-least-once):消息可能会再次发送(没有丢失的情况,但是会产生冗余)。在许多用例中已经足够。

恰好一次(Exactly-once):每条消息都被发送过一次且仅仅一次(没有丢失,没有冗余)。这是最佳情况,尽管很难保证在所有用例中都实现。

另一个方面是状态管理:对状态的存储有不同的策略,Spark Streaming将数据写入分布式文件系统中(例如HDFS);Samza使用嵌入式键值存储;而在Storm中,或者将状态管理滚动至应用层面,或者使用更高层面的抽象Trident。

用例

这三种框架在处理连续性的大量实时数据时的表现均出色而高效,那么使用哪一种呢?选择时并没有什么硬性规定,最多就是几个指导方针。

如果你想要的是一个允许增量计算的高速事件处理系统,Storm会是最佳选择。它可以应对你在客户端等待结果的同时,进一步进行分布式计算的需求,使用开箱即用的分布式RPC(DRPC)就可以了。最后但同样重要的原因:Storm使用Apache Thrift,你可以用任何编程语言来编写拓扑结构。如果你需要状态持续,同时/或者达到恰好一次的传递效果,应当看看更高层面的Trdent API,它同时也提供了微批处理的方式。

使用Storm的公司有:Twitter,雅虎,Spotify还有The Weather Channel等。

说到微批处理,如果你必须有状态的计算,恰好一次的递送,并且不介意高延迟的话,那么可以考虑Spark Streaming,特别如果你还计划图形操作、机器学习或者访问SQL的话,Apache Spark的stack允许你将一些library与数据流相结合(Spark SQL,Mllib,GraphX),它们会提供便捷的一体化编程模型。尤其是数据流算法(例如:K均值流媒体)允许Spark实时决策的促进。

使用Spark的公司有:亚马逊,雅虎,NASA JPL,eBay还有百度等。

如果你有大量的状态需要处理,比如每个分区都有许多十亿位元组,那么可以选择Samza。由于Samza将存储与处理放在同一台机器上,在保持处理高效的同时,还不会额外载入内存。这种框架提供了灵活的可插拔API:它的默认execution、消息发送还有存储引擎操作都可以根据你的选择随时进行替换。此外,如果你有大量的数据流处理阶段,且分别来自不同代码库的不同团队,那么Samza的细颗粒工作特性会尤其适用,因为它们可以在影响最小化的前提下完成增加或移除的工作。

使用Samza的公司有:LinkedIn,Intuit,Metamarkets,Quantiply,Fortscale等。

结论

本文中我们只对这三种Apache框架进行了简单的了解,并未覆盖到这些框架中大量的功能与更多细微的差异。同时,文中这三种框架对比也是受到限制的,因为这些框架都在一直不断的发展,这一点是我们应当牢记的。

[转载]流式大数据处理的三种框架:Storm,Spark和Samza的更多相关文章

  1. 流式大数据处理的三种框架:Storm,Spark和Samza

    许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的 ...

  2. 大数据处理的三种框架:Storm,Spark和Samza

    许多分布式计算系统都可以实时或接近实时地处理大数据流.下面对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的图 ...

  3. 翻译-In-Stream Big Data Processing 流式大数据处理

    相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yah ...

  4. storm流式大数据处理流行吗

    在如今这个信息高速增长的今天,信息实时计算处理能力已经是一项专业技能了,正是因为有了这些需求的存在才使得分布式,同时具备高容错的实时计算系统Storm才变得如此受欢迎,为什么这么说呢?下面看看新霸哥的 ...

  5. 转载:WinForm中播放声音的三种方法

    转载:WinForm中播放声音的三种方法 金刚 winForm 播放声音 本文是转载的文章.原文出处:http://blog.csdn.net/jijunwu/article/details/4753 ...

  6. 流式大数据计算实践(1)----Hadoop单机模式

    一.前言 1.从今天开始进行流式大数据计算的实践之路,需要完成一个车辆实时热力图 2.技术选型:HBase作为数据仓库,Storm作为流式计算框架,ECharts作为热力图的展示 3.计划使用两台虚拟 ...

  7. Struts中的数据处理的三种方式

    Struts中的数据处理的三种方式: public class DataAction extends ActionSupport{ @Override public String execute() ...

  8. flink 流式处理中如何集成mybatis框架

    flink 中自身虽然实现了大量的connectors,如下图所示,也实现了jdbc的connector,可以通过jdbc 去操作数据库,但是flink-jdbc包中对数据库的操作是以ROW来操作并且 ...

  9. 国内常用的三种框架:ionic/mui/framework7对比

    国内常用的三种框架:ionic/mui/framework7对比 原文连接:http://zhihu.com/question/19558750/answer/91179040

随机推荐

  1. 删除提示 FOREIGN KEY 约束引用”

    有时想删除某个表时,提示“无法删除对象 'Orders',因为该对象正由一个 FOREIGN KEY 约束引用”,原因很简单不要急躁,它被其它表的外键引用了,所以无法删除,在此只需先找到哪些表的外键引 ...

  2. 企业级Java应用最重要的4个性能指标

    应用性能管理(APM)是一种即时监控以实现对应用程序性能管理和故障管理的系统化解决方案.目前主要指对企业的关键业务应用进行监测.优化,最终达到提高企业应用的可靠性和质量,保证用户得到良好的服务,降低I ...

  3. 【面试题041】和为s的两个数字VS和为s的连续正数序列

    [面试题041]和为s的两个数字VS和为s的连续正数序列 题目一:     输入一个递增排序的数组和一个数字s,在数组中查找两个数,使得它们的和正好是s.如果有多对数字的和等于s,输出任意一对即可. ...

  4. NSOJ 鬼泣

    今天组队赛的一道最短路的题,给你一个矩阵,矩阵上有L,R,G,A,分别表示当你到达这个点的时候你要向左,向右,向前,向后走,如果要向别的方向走需要花费1点的魔力,正常情况下走需要花费1点的时间.问花费 ...

  5. [STL]deque和stack、queue

    怎么说呢,deque是一种双向开口的连续线性空间,至少逻辑上看上去是这样.然而事实上却没有那么简单,准确来说deque其实是一种分段连续空间,因此其实现以及各种操作比vector复杂的多. 一.deq ...

  6. windows JDK 版本切换

    windows JDK 版本切换1. HKEY_LOCAL_MACHINE“SOFTWARE“JavaSoft“Java Runtime Environment“CurrentVersion, 把这个 ...

  7. spring_150803_component

    实体类: package com.spring.model; public class DogPet { private int id; private String name; private in ...

  8. FastJson与Gson小测试

    最近用到Json来传输数据,找到两个比较简单的工具 Gson 和 FastJson随便测试一下两个工具的效率~ 1 package com.json.fast; import java.util.Ar ...

  9. NPOI之Excel——合并单元格、设置样式、输入公式

    首先建立一个空白的工作簿用作测试,并在其中建立空白工作表,在表中建立空白行,在行中建立单元格,并填入内容: //建立空白工作簿 IWorkbook workbook = new HSSFWorkboo ...

  10. P2P通信标准协议(一)之STUN

    前一段时间在P2P通信原理与实现中介绍了P2P打洞的基本原理和方法,我们可以根据其原理为自己的网络程序设计一套通信规则, 当然如果这套程序只有自己在使用是没什么问题的.可是在现实生活中,我们的程序往往 ...