后缀数组+单调栈

  代码

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = ; const int MAXN = N; struct SuffixArray{
int wa[MAXN];
int wb[MAXN];
int wv[MAXN];
int ws[MAXN]; int sa[MAXN];
int rank[MAXN];
int height[MAXN];
int r[MAXN];
int n;
int m; void input(int *val, int len, int Max){
for (int i = ;i < len;i++)
r[i] = val[i];
r[len] = ;
n = len;
m = Max;
calSa();
calHeight();
} int cmp(int *r, int a, int b, int l){
return (r[a] == r[b] && r[a + l] == r[b + l]);
} void calSa(){
int i, j, p, *x = wa, *y = wb, *t;
for (i = ;i < m;i++) ws[i] = ;
for (i = ;i < n + ;i++) ws[x[i] = r[i]]++;
for (i = ;i < m;i++) ws[i] += ws[i - ];
for (i = n;i >= ;i--) sa[--ws[x[i]]] = i;
for (j = , p = ;p < n + ;j *= , m = p){
for (p = , i = n - j + ;i < n + ;i++) y[p++] = i;
for (i = ;i < n + ;i++) if (sa[i] >= j) y[p++] = sa[i] - j;
for (i = ;i < n + ;i++) wv[i] = x[y[i]];
for (i = ;i < m;i++) ws[i] = ;
for (i = ;i < n + ;i++) ws[wv[i]]++;
for (i = ;i < m;i++) ws[i] += ws[i - ];
for (i = n;i >= ;i--) sa[--ws[wv[i]]] = y[i];
for (t = x, x = y, y = t, p = , x[sa[]] = , i = ; i < n + ;i++)
x[sa[i]] = cmp(y, sa[i - ], sa[i], j) ? p - : p++;
}
} void calHeight(){
int i, j, k = ;
for (i = ;i <= n;i++) rank[sa[i]] = i;
for (i = ;i < n;height[rank[i++]] = k)
for (k?k--:, j = sa[rank[i]- ];r[i + k] == r[j + k];k++);
} int Log[MAXN];
int best[][MAXN];
void initRMQ() {
Log[] = -;
for(int i = ;i <= MAXN;i++){
Log[i]=(i & (i - ))?Log[i - ] : Log[i - ] + ;
}
for(int i = ; i <= n ; i ++) best[][i] = height[i];
for(int i = ; i <= Log[n] ; i ++) {
int limit = n - (<<i) + ;
for(int j = ; j <= limit ; j ++) {
best[i][j] = (best[i-][j] > best[i-][j+(<<i>>)]) ? best[i-][j+(<<i>>)] : best[i-][j];
}
}
}
int lcp(int a,int b) {
a = rank[a]; b = rank[b];
if(a > b){
int t = a;
a = b;
b = t;
}
a ++;
int t = Log[b - a + ];
return (best[t][a] > best[t][b - (<<t) + ])? best[t][b - (<<t) + ] : best[t][a];
}
}SA;
int a[N],i,len,top,stack[N];
long long ans,sum;
char s[N];
int main()
{
scanf("%s",&s);
len=strlen(s);
for (i=;i<=len;i++)
{
ans=ans+(long long)i*(len-);
a[i-]=s[i-];
}
SA.input(a,len,);
for (i=;i<=len;i++)
{
while (SA.height[i]<SA.height[stack[top]])
{
sum=sum-(long long)(stack[top]-stack[top-])*SA.height[stack[top]];
top--;
}
top++;stack[top]=i;
sum=sum+(long long)(stack[top]-stack[top-])*SA.height[stack[top]];
ans=ans-*sum;
}
printf("%lld\n",ans);
}
//3 1 4 2 5 0

[Ahoi2013]差异的更多相关文章

  1. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  2. bzoj 3238 Ahoi2013 差异

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  4. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

  5. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  6. 【LG4248】[AHOI2013]差异

    [LG4248][AHOI2013]差异 题面 洛谷 题解 后缀数组版做法戳我 我们将原串\(reverse\),根据后缀自动机的性质,两个后缀的\(lcp\)一定是我们在反串后两个前缀的\(lca\ ...

  7. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  8. P4248 [AHOI2013]差异 解题报告

    P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...

  9. 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description In ...

  10. bzoj 3238: [Ahoi2013]差异 -- 后缀数组

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...

随机推荐

  1. HDU 5876 关于补图的bfs

    1.HDU 5876  Sparse Graph 2.总结:好题,把STL都过了一遍 题意:n个点组成的完全图,删去m条边,求点s到其余n-1个点的最短距离. 思路:把点分为两个集合,A为所有没有到达 ...

  2. Oracle 数值函数

    上一次整理了一下Oracle字符串中常用的函数,接下来就整理一下Oracle数值方面的一些常用的函数. 1.NVL 空值转换函数,请注意一下,任何包含NULL值的算术运算都会得到NULL,这个函数有点 ...

  3. 初识WebSocket

    众所周知,Http协议是无状态的,并且是基于Request/Response的方式与服务器进行交互,也就是我们常说的单工模式.但是随着互联 网的发展,浏览器与服务端进行双向通信需求的增加,长轮询向服务 ...

  4. css设置移动端checkbox和radio样式

    复选框Checkbox是Web应用常用控件,随处可见,原生的复选框控件一般就像下面这样: 这取决于操作系统和浏览器,有些时候,这种样子并不能满足设计要求,这时需要更为精致的复选框样式.以往只有少数浏览 ...

  5. StoryBoard--看上去很美

    StoryBoard--看上去很美 介绍 StoryBoard 是苹果在 2011 年的 WWDC Session 309<Introducing Interface Builder Story ...

  6. Android 图片三级缓存

    图片缓存的原理 实现图片缓存也不难,需要有相应的cache策略.这里采用 内存-文件-网络 三层cache机制,其中内存缓存包括强引用缓存和软引用缓存(SoftReference),其实网络不算cac ...

  7. Js中this用法及注意点详解

          我们在写js时,特别是用到回调函数时,经常会发现this指代的对象总是可能脱离自己的思路而发生改变.面向对象语言的特性告诉我们this始终指代它的调用者,而在js中回调函数中内部的this ...

  8. getPos,offsetTop

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  9. 创建catalog数据库

    1数据库版本 2环境准备 3目录数据库准备 4创建目录数据库 5使用目录数据库

  10. Ubuntu14.04配置记录

    公司配的台式机,新装了ubuntu,记录下配置过程. vim sudo apt-get install vim unzip sudo apt-get install unzip unrar sudo ...