Python图像处理丨图像的灰度线性变换
摘要:本文主要讲解灰度线性变换。
本文分享自华为云社区《[Python图像处理] 十五.图像的灰度线性变换》,作者:eastmount。
一.图像灰度线性变换原理
图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示:

该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距。
- 当α=1,b=0时,保持原始图像
- 当α=1,b!=0时,图像所有的灰度值上移或下移
- 当α=-1,b=255时,原始图像的灰度值反转
- 当α>1时,输出图像的对比度增强
- 当0<α<1时,输出图像的对比度减小
- 当α<0时,原始图像暗区域变亮,亮区域变暗,图像求补
如图所示,显示了图像的灰度线性变换对应的效果图。

二.图像灰度上移变换
该算法将实现图像灰度值的上移,从而提升图像的亮度,其实现代码如下所示。由于图像的灰度值位于0至255区间之内,所以需要对灰度值进行溢出判断。
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度上移变换 DB=DA+50
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]+50) > 255):
gray = 255
else:
gray = int(grayImage[i,j]+50)
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
其输出结果如下图所示,图像的所有灰度值上移50,图像变得更白了。注意,纯黑色对应的灰度值为0,纯白色对应的灰度值为255。

三.图像对比度增强变换
该算法将增强图像的对比度,Python实现代码如下所示:
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度增强变换 DB=DA*1.5
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]*1.5) > 255):
gray = 255
else:
gray = int(grayImage[i,j]*1.5)
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
其输出结果如下图所示,图像的所有灰度值增强1.5倍。

四.图像对比度减弱变换
该算法将减弱图像的对比度,Python实现代码如下所示:
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度减弱变换 DB=DA*0.8
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j]*0.8)
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
其输出结果如下图所示,图像的所有灰度值减弱,图像变得更暗。

五.图像灰度反色变换
反色变换又称为线性灰度求补变换,它是对原图像的像素值进行反转,即黑色变为白色,白色变为黑色的过程。其Python实现代码如下所示:
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度反色变换 DB=255-DA
for i in range(height):
for j in range(width):
gray = 255 - grayImage[i,j]
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
其输出结果如下图所示,图像处理前后的灰度值是互补的。

图像灰度反色变换在医学图像处理中有一定的应用,如下图所示:

PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时参考如下文献:
- 杨秀璋等. 基于苗族服饰的图像锐化和边缘提取技术研究[J]. 现代计算机,2018(10).
- 《数字图像处理》(第3版),冈萨雷斯著,阮秋琦译,电子工业出版社,2013年.
- 《数字图像处理学》(第3版),阮秋琦,电子工业出版社,2008年,北京.
- 《OpenCV3编程入门》,毛星云,冷雪飞,电子工业出版社,2015.
- [数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
Python图像处理丨图像的灰度线性变换的更多相关文章
- Python图像处理丨图像腐蚀与图像膨胀
摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...
- 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效
摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...
- Python图像处理丨认识图像锐化和边缘提取的4个算子
摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...
- 【python图像处理】图像的缩放、旋转与翻转
[python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...
- 跟我学Python图像处理丨何为图像的灰度非线性变换
摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...
- 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算
摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...
- Python图像处理丨基于OpenCV和像素处理的图像灰度化处理
摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...
- Python图像处理丨带你认识图像量化处理及局部马赛克特效
摘要:本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效. 本文分享自华为云社区<[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效>,作者: eastmoun ...
- 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样
摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...
- Python图像处理丨三种实现图像形态学转化运算模式
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算.图像闭运算和梯度运算 本文分享自华为云社区<[Python图像处理] 九.形态学之图像开运算.闭运算.梯度运 ...
随机推荐
- mybatis 操作 mysql 动态创建数据表
Map 数据一般是根据需求生成的,例如 map.put("ticketId",176),map.put("ticketName","测试工单" ...
- JAVA类的加载(1) ——类的加载及类加载器介绍
过程:当程序主动使用某个类时,如果该类还未被加载到内存中,系统会通过加载.连接.初始化三个步骤来对该类进行初始化,有时候称为类加载(类初始化) 类加载 定义:类加载 指的是将类的class文件读入 ...
- 七个很实用的开源项目「GitHub 热点速览」
本周特推的两个项目都是异常实用的项目,一个接棒上周的视频重制项目 video-retalking 这次则是直接将视频替换成另外一个语种:另外一个则是解决日志阅读问题的 tailspin,让你在成千上万 ...
- command_execution
前置知识 可以通过ping的TTL来判断系统的版本 判断了是Linux之后就使用Linux的连接命令来进行操作 这里直接全局搜索flag相关的文件 linux全局查询文件_linux全局查找某个文件- ...
- Linux 本地AMH 服务器管理面板实现远程访问方法
AMH 是一款基于 Linux 系统的服务器管理面板,它提供了一系列的功能,包括网站管理.FTP 管理.数据库管理.DNS 管理.SSL 证书管理等.使用 AMH 云主机面板可以方便地管理服务器,提高 ...
- Verilog HDL数据流建模与运算符
数据流建模使用的连续赋值语句由关键词assign开始,一般用法如下: wire [位宽说明]变量名1, 变量名2, ..., 变量名n; assign 变量名 = 表达式; 只要等号右边的值发生变化, ...
- 集合-Nim游戏
与普通\(NIM\)游戏不同的地方是限制了每次拿东西的个数,这个个数会给定在集合\(S\)中,也就是说每次拿的数量只能在集合\(S\)中. 现在就可以把每一堆石子看成是一个有向图了,最主要就是用记忆化 ...
- 通过计算巢轻松部署 Ansible Semaphore
概述 Ansible Semaphore 是一个现代化的 Ansible 用户界面.可以轻松运行 Ansible Playbook,获取有关失败的通知,并控制部署系统的访问权限.如果你的项目已经发展壮 ...
- Django笔记四十三之使用uWSGI部署Django系统
本文首发于公众号:Hunter后端 原文链接:Django笔记四十三之使用uWSGI部署Django系统 目前部署 Django 的方式一般来说是使用 Nginx + uWSGI + Django 来 ...
- erp——绩效考核系统——软件需求规格说明书
绩效考核系统--软件需求规格说明书 引言 1.1编写目的:此文件需求说明书主要是为了开发人员能了解系统之间的关系,使用者能明白系统的使用方法,另外,可以供一些学习的小白进行参考,提供需要的人参考软件需 ...