[转]广义正交匹配追踪(gOMP)
1 gOMP重构算法流程
(1)构造K稀疏信号
% Generate K-sparse vector
%
% N : original signal size.
% K : sparsity level
%
% Output parameters
% x_omp : estimated signal
% iter_count: iteration count during estimating
%
% Written by Suhyuk (Seokbeop) Kwon
% Information System Lab., Korea Univ.
% http://isl.korea.ac.kr
function [x x_pos] = islsp_GenSparseVec(N, K)
KPos = K;
if N/2 < K
KPos = N-K;
end
randPos = ceil(N*rand( KPos, 1 ));
randPos = union(randPos,randPos);
leftPOsLen = KPos-length(randPos);
while leftPOsLen > 0
tmpPos = ceil(N*rand( leftPOsLen, 1 ));
randPos = union(tmpPos,randPos);
leftPOsLen = KPos-length(randPos);
end
if KPos < K
randPos = setxor((1:N), randPos);
end
x = zeros( N, 1 );
x(randPos) = randn( K, 1 );
x_pos = randPos;
end
(2)gOMP函数
% Estimate the sparse signal x using generalized OMP
%
% y : observation
% Phi : sensing matrix
% K : sparsity
% S : selection length
%
% Output parameters
% x_omp : estimated signal
% iter_count: iteration count during estimating
%
% Written by Suhyuk (Seokbeop) Kwon
% Information System Lab., Korea Univ.
% http://isl.korea.ac.kr
function [x_ommp iter_count] = islsp_EstgOMP(y, Phi, K, S, zero_threshold)
% Check the parameters
if nargin < 3
error('islsp_EstgOMP : Input arguments y ,Phi and K must be specified.');
end if nargin < 4
S = max(K/4, 1);
end if nargin < 5
zero_threshold = 1e-6;
end
% Initialize the variables
[nRows nCols] = size(Phi);
x_ommp = zeros(size(Phi,2), 1);
residual_prev = y;
supp = [];
iter_count = 0;
while (norm(residual_prev) > zero_threshold && iter_count < K)
iter_count = iter_count+1;
[supp_mag supp_idx] = sort(abs(Phi'*residual_prev), 'descend');
supp_n = union(supp, supp_idx(1:S));
if (length(supp_n) ~= length(supp)) && (length(supp_n) < nRows )
x_hat = Phi(:,supp_n)\y;
residual_prev = y - Phi(:,supp_n)*x_hat;
supp = supp_n;
else
break;
end
end
x_ommp(supp) = Phi(:,supp)\y; if nargout < 2
clear('iter_count');
end
end
(3)测试主函数
% Measurements size
m = 50;
% Signal size
N = 100;
% Sparsity level
K = 20;
% Generate sensing matrix
Phi = randn(m,N)/sqrt(m);
% Generate sparse vector
[x x_pos] = islsp_GenSparseVec(N, K);
y = Phi*x;
% Using default parameters
[x1 itr1] = islsp_EstgOMP(y, Phi, K);
% Find the sparse vector via selecting 4 indices
[x2 itr2] = islsp_EstgOMP(y, Phi, K, 4);
% Find the sparse vector via selecting 4 indices until the residual becomes 1e-12
[x3 itr3] = islsp_EstgOMP(y, Phi, K, 4, 1e-12);
disp('Mean square error');
[mse(x-x1) mse(x-x2) mse(x-x3)]
disp('Iteration number');
[itr1 itr2 itr3]
[转]广义正交匹配追踪(gOMP)的更多相关文章
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
- [转]压缩感知重构算法之分段正交匹配追踪(StOMP)
分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的 ...
- 浅谈压缩感知(二十二):压缩感知重构算法之正则化正交匹配追踪(ROMP)
主要内容: ROMP的算法流程 ROMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.ROMP的算法流程 正则化正交匹配追踪ROMP算法流程与OMP的最大不同之 ...
- 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...
- 浅谈压缩感知(九):正交匹配追踪算法OMP
主要内容: OMP算法介绍 OMP的MATLAB实现 OMP中的数学知识 一.OMP算法介绍 来源:http://blog.csdn.net/scucj/article/details/7467955 ...
- opencv实现正交匹配追踪算法OMP
//dic: 字典矩阵: //signal :待重构信号(一次只能重构一个信号,即一个向量) //min_residual: 最小残差 //sparsity:稀疏度 //coe:重构系数 //atom ...
- 压缩感知重构算法之压缩采样匹配追踪(CoSaMP)
压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法.CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了 ...
随机推荐
- java的计时:毫秒、纳秒
System.currentTimeMillis()获取毫秒值,但是其精度依赖操作系统 想实现较为精确的毫秒,可以采用 System.nanoTime()/1000000L System.nanoTi ...
- GPIO简介
GPIO(General Purpose I/O Ports)意思为通用输入/输出端口,通俗地说,就是一些引脚,可以通过它们输出高低电平或者通过它们读入引脚的状态-是高电平或是低电平. GPIO口一是 ...
- db2安装配置备份还原
环境 cenos 7.0 db2版本 db2_v101_linuxx64_expc.tar 安装db2 解压db2 tar zxvf db2_v101_linuxx64_expc.tar cd exp ...
- hdoj 2046 骨牌铺方格 【DP】+【斐波那契】
dp果然不是好学的... 第n个,即2*n时,可由第n-1个的竖直排列再加一个,和第n-2个中横着排两个 所以f(n) = 1×f(n-1) + 1×f(n-2): 骨牌铺方格 Time Limit: ...
- 全栈JavaScript之路(十六)HTML5 HTMLDocument 类型的变化
HTML5 扩展了 HTMLDocument, 添加了新的功能. 1.document.readState = 'loading' || 'complete' //支持readyState 属性的浏 ...
- 24Web前端架构
近来都是接触前端.所以学多点这方面的东西,虽说有实战到项目里面去了,但可能还没走到所谓正确的道路上去.欢迎交流. 转载请说明来着:http://blog.csdn.net/wowkk -------- ...
- Kemans算法及其Python 实现
算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就 ...
- web 界面设计---js设置txt值
<head><meta http-equiv="Content-Type" content="text/html; charset=gb2312&quo ...
- CXF拦截器(Interceptor)LoggingInInterceptor
Interceptor是CXF架构中一个重要的功能.你可以在不对核心模块进行修改的情况下,动态添加很多功能(你可以想象Struts2拦截器的优点).这对于CXF这个以处理消息为中心的服务框架来说是非常 ...
- ubuntu12.04 64位系统配置jdk1.6和jdk-6u20-linux-i586.bin下载地址
1:下载地址http://code.google.com/p/autosetup1/downloads/detail?name=jdk-6u20-linux-i586.bin&can=2&am ...