Connect the Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 456    Accepted Submission(s): 144

Special Judge

Problem Description
Once there was a special graph. This graph had
n
vertices and some edges. Each edge was either white or black. There was no edge connecting one vertex and the vertex itself. There was no two edges connecting the same pair of vertices. It is special because the each vertex is connected to at most two black
edges and at most two white edges.



One day, the demon broke this graph by copying all the vertices and in one copy of the graph, the demon only keeps all the black edges, and in the other copy of the graph, the demon keeps all the white edges. Now people only knows there are
w0
vertices which are connected with no white edges,
w1
vertices which are connected with 1
white edges, w2
vertices which are connected with 2
white edges, b0
vertices which are connected with no black edges,
b1
vertices which are connected with 1
black edges and b2
vertices which are connected with 2
black edges.



The precious graph should be fixed to guide people, so some people started to fix it. If multiple initial states satisfy the restriction described above, print any of them.
 
Input
The first line of the input is a single integer
T (T≤700),
indicating the number of testcases.



Each of the following T
lines contains w0,w1,w2,b0,b1,b2.
It is guaranteed that 1≤w0,w1,w2,b0,b1,b2≤2000
and b0+b1+b2=w0+w1+w2.




It is also guaranteed that the sum of all the numbers in the input file is less than
300000.
 
Output
For each testcase, if there is no available solution, print
−1.
Otherwise, print m
in the first line, indicating the total number of edges. Each of the next
m
lines contains three integers x,y,t,
which means there is an edge colored t
connecting vertices x
and y.
t=0
means this edge white, and t=1
means this edge is black. Please be aware that this graph has no self-loop and no multiple edges. Please make sure that
1≤x,y≤b0+b1+b2.
 
Sample Input
2
1 1 1 1 1 1
1 2 2 1 2 2
 
Sample Output
-1
6
1 5 0
4 5 0
2 4 0
1 4 1
1 3 1
2 3 1
 
Author
XJZX
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  

pid=5395" target="_blank">5395 5394 

pid=5393" target="_blank">5393 

pid=5392" target="_blank">5392 

pid=5391" target="_blank">5391 

 

构造法:

首先保证度数之和为偶数,即w1=b1=1 ,否则无解

又w0,w1,w2,b0,b1,b2均为正数 故

当n=4时,仅仅有1种情况 1 2 1 不是无解

当n≥4时,先构造2个环分别为白环,黑环

对于奇数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n 2 4 6 ... n-1



对于偶数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n-1 2 n n-2 n-4 ... 4

此时,对于每一个环而言,构造答案

1-2-2-...-2-2-1
1-1 1-1 .. 1-1
1-1 0 .. 0

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXD (2000+10)
#define MAXN (6000+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int a2[MAXN],a1[MAXN],n;
void calc(int *a,int n0,int n1,int n2,int p)
{
int i=1;
if (n1==0&&n2==0) return;
For(i,n2+1)
{
printf("%d %d %d\n",a[i],a[i+1],p);
}
n1-=2;
for(int i=n2+3,j=1;j<=n1;i+=2,j+=2) printf("%d %d %d\n",a[i],a[i+1],p); }
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); int T; cin>>T;
while(T--) {
int w0,w1,w2,b0,b1,b2;
scanf("%d%d%d%d%d%d",&w0,&w1,&w2,&b0,&b1,&b2);
n=w0+w1+w2; //特判
if ((w1&1)||(b1&1)) { printf("-1\n");continue;} int m=(w1+2*w2+b1+2*b2)/2; if (n==4)
{
puts("4\n1 2 0\n1 3 0\n2 3 1\n3 4 1");
continue;
}
else if (n>4) {
For(i,n) a1[i]=i;
if (n%2==0)
{
for(int i=1,j=1;i<=n/2;i++,j+=2) a2[i]=j;
for(int i=n/2+1,j=2;i<=n;i++,j+=2) a2[i]=j;
a2[n+1]=1;
}
else {
for(int i=1,j=1;i<=n/2+1;i++,j+=2) a2[i]=j;
a2[n/2+2]=2;
for(int i=n/2+3,j=n-1;i<=n;i++,j-=2) a2[i]=j;
a2[n+1]=1;
}
cout<<m<<endl;
calc(a1,w0,w1,w2,0);
calc(a2,b0,b1,b2,1);
} } return 0;
}

HDU 5302(Connect the Graph- 构造)的更多相关文章

  1. [2015hdu多校联赛补题]hdu5302 Connect the Graph

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5302 题意:给你一个无向图,它的边要么是黑色要么是白色,且图上的每个点最多与两个黑边两个白边相连.现在 ...

  2. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  3. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  4. HDU 5876:Sparse Graph(BFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5876 Sparse Graph Problem Description   In graph theory, t ...

  5. hdu 3371 Connect the Cities

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Description In 2100, since th ...

  6. HDU - 6313 Hack It(构造)

    http://acm.hdu.edu.cn/showproblem.php?pid=6313 题意 让你构造一个矩阵使得里面不存在四个顶点都为1的矩形,并且矩阵里面1的个数要>=85000 分析 ...

  7. HDU 3371 Connect the Cities(prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3371 Problem Description In 2100, since the sea leve ...

  8. hdu 3371 Connect the Cities(最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3371 984ms风险飘过~~~ /************************************ ...

  9. HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

随机推荐

  1. tornado框架基础06-SQLAlchemy连接数据库

    01 ORM 在服务器后台,数据是要存储在数据库的,但是如果项目在开发和部署的时候,是使用的不同的数据库,该怎么办呢?是不是需要把所有的 SQL 语句都再重新写一遍呢? 和数据库相关,不同的数据库需要 ...

  2. LeetCode(100) Same Tree

    题目 Given two binary trees, write a function to check if they are equal or not. Two binary trees are ...

  3. 数据结构实验6:C++实现二叉树类

    实验6 学号:     姓名:      专业:   6.1 实验目的 掌握二叉树的动态链表存储结构及表示. 掌握二叉树的三种遍历算法(递归和非递归两类). 运用二叉树三种遍历的方法求解有关问题. 6 ...

  4. [mvc]MVC_Model

    1,Model的职责: Model只负责与数据处理相关的工作. 2,开发Model的基本观念 采用ORM信息访问技术开发 ORM是将结构化的关系型数据,映射成面向对象模型.对于EF来说,就是关系型数据 ...

  5. robot framework常见错误:RIDE运行一次后不显示log

    在使用RIDE进行web自动化测试时,会发现经常运行第二遍不显示下方log,如下 原因: 代码使用的是谷歌浏览器.IE浏览器测试,运行一次后chromedriver.exe,IEDriverServe ...

  6. struts2接受请求参数

    https://blog.csdn.net/y249839817/article/details/77702745 https://blog.csdn.net/nthack5730/article/d ...

  7. Python的另一种开发环境--Anaconda中的Spyder

    本文作者LucyGill,转载请注明出处(虽然我觉得并不会有人转载). 刚开始学Python的时候,我用的是其自带的idle(安装Python后,在开始菜单里可以找到),后来发现在eclipse中设置 ...

  8. Catch The Caw——(广度优先搜索的应用,队列)

    抓住那头牛(POJ3278)农夫知道一头牛的位置,想要抓住它.农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000).农夫有 ...

  9. 用 Gearman 分发 PHP 应用程序的工作负载【转载】

    通过本文,了解工作分发系统 Gearman 并分发用 PHP.C.Ruby 及其他受支持语言编写的应用程序的工作负载. 尽管一个 Web 应用程序的大部分内容都与表示有关,但它的价值与竞争优势却可能体 ...

  10. php的错误控制运算符

    php的错误控制运算符 PHP中提供了一个错误控制运算符“@”. 可以将@放置在一个PHP表达式之前,该表达式可能产生的任何错误信息都被忽略掉: 如果开启了php.ini 中的 track_error ...