Connect the Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 456    Accepted Submission(s): 144

Special Judge

Problem Description
Once there was a special graph. This graph had
n
vertices and some edges. Each edge was either white or black. There was no edge connecting one vertex and the vertex itself. There was no two edges connecting the same pair of vertices. It is special because the each vertex is connected to at most two black
edges and at most two white edges.



One day, the demon broke this graph by copying all the vertices and in one copy of the graph, the demon only keeps all the black edges, and in the other copy of the graph, the demon keeps all the white edges. Now people only knows there are
w0
vertices which are connected with no white edges,
w1
vertices which are connected with 1
white edges, w2
vertices which are connected with 2
white edges, b0
vertices which are connected with no black edges,
b1
vertices which are connected with 1
black edges and b2
vertices which are connected with 2
black edges.



The precious graph should be fixed to guide people, so some people started to fix it. If multiple initial states satisfy the restriction described above, print any of them.
 
Input
The first line of the input is a single integer
T (T≤700),
indicating the number of testcases.



Each of the following T
lines contains w0,w1,w2,b0,b1,b2.
It is guaranteed that 1≤w0,w1,w2,b0,b1,b2≤2000
and b0+b1+b2=w0+w1+w2.




It is also guaranteed that the sum of all the numbers in the input file is less than
300000.
 
Output
For each testcase, if there is no available solution, print
−1.
Otherwise, print m
in the first line, indicating the total number of edges. Each of the next
m
lines contains three integers x,y,t,
which means there is an edge colored t
connecting vertices x
and y.
t=0
means this edge white, and t=1
means this edge is black. Please be aware that this graph has no self-loop and no multiple edges. Please make sure that
1≤x,y≤b0+b1+b2.
 
Sample Input
2
1 1 1 1 1 1
1 2 2 1 2 2
 
Sample Output
-1
6
1 5 0
4 5 0
2 4 0
1 4 1
1 3 1
2 3 1
 
Author
XJZX
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  

pid=5395" target="_blank">5395 5394 

pid=5393" target="_blank">5393 

pid=5392" target="_blank">5392 

pid=5391" target="_blank">5391 

 

构造法:

首先保证度数之和为偶数,即w1=b1=1 ,否则无解

又w0,w1,w2,b0,b1,b2均为正数 故

当n=4时,仅仅有1种情况 1 2 1 不是无解

当n≥4时,先构造2个环分别为白环,黑环

对于奇数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n 2 4 6 ... n-1



对于偶数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n-1 2 n n-2 n-4 ... 4

此时,对于每一个环而言,构造答案

1-2-2-...-2-2-1
1-1 1-1 .. 1-1
1-1 0 .. 0

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXD (2000+10)
#define MAXN (6000+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int a2[MAXN],a1[MAXN],n;
void calc(int *a,int n0,int n1,int n2,int p)
{
int i=1;
if (n1==0&&n2==0) return;
For(i,n2+1)
{
printf("%d %d %d\n",a[i],a[i+1],p);
}
n1-=2;
for(int i=n2+3,j=1;j<=n1;i+=2,j+=2) printf("%d %d %d\n",a[i],a[i+1],p); }
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); int T; cin>>T;
while(T--) {
int w0,w1,w2,b0,b1,b2;
scanf("%d%d%d%d%d%d",&w0,&w1,&w2,&b0,&b1,&b2);
n=w0+w1+w2; //特判
if ((w1&1)||(b1&1)) { printf("-1\n");continue;} int m=(w1+2*w2+b1+2*b2)/2; if (n==4)
{
puts("4\n1 2 0\n1 3 0\n2 3 1\n3 4 1");
continue;
}
else if (n>4) {
For(i,n) a1[i]=i;
if (n%2==0)
{
for(int i=1,j=1;i<=n/2;i++,j+=2) a2[i]=j;
for(int i=n/2+1,j=2;i<=n;i++,j+=2) a2[i]=j;
a2[n+1]=1;
}
else {
for(int i=1,j=1;i<=n/2+1;i++,j+=2) a2[i]=j;
a2[n/2+2]=2;
for(int i=n/2+3,j=n-1;i<=n;i++,j-=2) a2[i]=j;
a2[n+1]=1;
}
cout<<m<<endl;
calc(a1,w0,w1,w2,0);
calc(a2,b0,b1,b2,1);
} } return 0;
}

HDU 5302(Connect the Graph- 构造)的更多相关文章

  1. [2015hdu多校联赛补题]hdu5302 Connect the Graph

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5302 题意:给你一个无向图,它的边要么是黑色要么是白色,且图上的每个点最多与两个黑边两个白边相连.现在 ...

  2. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  3. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  4. HDU 5876:Sparse Graph(BFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5876 Sparse Graph Problem Description   In graph theory, t ...

  5. hdu 3371 Connect the Cities

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Description In 2100, since th ...

  6. HDU - 6313 Hack It(构造)

    http://acm.hdu.edu.cn/showproblem.php?pid=6313 题意 让你构造一个矩阵使得里面不存在四个顶点都为1的矩形,并且矩阵里面1的个数要>=85000 分析 ...

  7. HDU 3371 Connect the Cities(prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3371 Problem Description In 2100, since the sea leve ...

  8. hdu 3371 Connect the Cities(最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3371 984ms风险飘过~~~ /************************************ ...

  9. HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

随机推荐

  1. mysql EXPLAIN Join Types 手册解释 及数据实操

     第一部分:名称解释 文档地址 https://dev.mysql.com/doc/refman/5.7/en/explain-output.html EXPLAIN Join Types: The ...

  2. 05 selenium模块

    selenium模块 selenium selenium是Python的一个第三方库,对外提供的接口可以操作浏览器,然后让浏览器完成自动化的操作. selenium最初是一个自动化测试工具,而爬虫中使 ...

  3. 【07】Firebug监控网络情况

    [07] Firebug监控网络情况 Firebug可以监控网页中每个文件加载的时间. 打开Firebug.点击"网络",然后确定已经启用,重新载入当前页面.Firebug显示如下 ...

  4. python操作剪贴板错误提示:pywintypes.error: (1418, 'GetClipboardData',线程没有打开的剪贴板)

    问题现象:通过打断点,一步步调试可以正常复制和粘贴剪贴板数据.但是直接运行会报错pywintypes.error: (1418, 'GetClipboardData',线程没有打开的剪贴板) 问题原因 ...

  5. Leetcode 264.丑数II

    丑数II 编写一个程序,找出第 n 个丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, 5, 6, 8, 9, 10 ...

  6. 字符串常量与const常量内存区(——选自陈皓的博客)

    1. 一个常见的考点: char* p = "test"; 那么理利用指针p来改变字符串test的内容都是错误的非法的. 例如: p[0] = 's'; strcpy(p, &qu ...

  7. AndroidUI的基本结构

    AndroidUI的基本结构 创建时间: 2013-9-13 11:05 更新时间: 2013-9-13 11:05

  8. iOS tableview上textView在编辑状态时,tableview自动上移的功能

    在viewcognroller中,添加tableview时, tableview中cell上的textField如果吊起键盘时,tableview时可以自动上移,但是如果是textView吊起键盘,t ...

  9. python学习之-- redis模块操作 LIST

    redis 模块操作之 List List 操作,在内存中按照一个name对应一个List来存储. lpush(name,values):在name对应的list中添加元素,每个新的元素都添加到列表的 ...

  10. SGU 104 Little shop of flowers【DP】

    浪(吃)了一天,水道题冷静冷静.... 题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=104 题意: 给定每朵花放在每个花盆的值, ...