高斯消元_HihoCoderOffer6_03
题目3 : 图像算子
描述
在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果。
假设原图为H × W的矩阵A,算子矩阵为D × D的矩阵Op,则处理后的矩阵B大小为(H-D+1) × (W-D+1)。其中:
B[i][j] = ∑(A[i-1+dx][j-1+dy]*Op[dx][dy]) | (dx = 1 .. D, dy = 1 .. D), 1 ≤ i ≤ H-D+1, 1 ≤ j ≤ W-D+1
给定矩阵A和B,以及算子矩阵的边长D。你能求出算子矩阵中每个元素的值吗?
输入
第1行:3个整数,H, W, D,分别表示原图的高度和宽度,以及算子矩阵的大小。5≤H,W≤60,1≤D≤5,D一定是奇数。
第2..H+1行:每行W个整数,第i+1行第j列表示A[i][j],0≤A[i][j]≤255
接下来H-D+1行:每行W-D+1个整数,表示B[i][j],B[i][j]在int范围内,可能为负数。
输入保证有唯一解,并且解矩阵的每个元素都是整数。
输出
第1..D行:每行D个整数,第i行第j列表示Op[i][j]。
- 样例输入
-
5 5 3
1 6 13 10 3
13 1 5 6 15
8 2 15 0 12
19 19 17 18 18
9 18 19 5 17
22 15 6
35 -36 51
-20 3 -32 - 样例输出
-
0 1 0
1 -4 1
0 1 0
高斯消元解齐次线性方程组。A * OP = B ,这里OP矩阵为未知矩阵。作为一个卷积算子矩阵,它完成的功能是以自身矩阵(d * d)在A上扫描并运算。比如在A上的第一个位置(1,1)上,
1 6 13 x1 x2 x3
13 1 5 mul直接对应位置元素相乘 x4 x5 x6 = B[1]][1]= 22。 移动d * d次刚好 d * d个方程组,求解d*d个未知数。
8 2 15 x7 x8 x9
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#define PII pair<int, int>
#define INF 0x3f3f3f3f
#define eps 1e-9
using namespace std ; const int Maxn = ; int h, w, d;
int a[Maxn][Maxn], b[Maxn][Maxn];
//Mat:系数矩阵 V:解向量
double Mat[Maxn][Maxn], V[Maxn];
//Gauss消元:n是行列式个数,m是未知变量个数
void Gauss(int n, int m)
{
int k = , i , j;
for(j = ; j < m; j ++){
for(i = k; i < n; i ++){
if(fabs(Mat[i][j]) > eps)
break;
}
if(i == n) continue;
for(int p = ; p < m; p ++){
swap(Mat[i][p], Mat[k][p]);
}swap(V[i], V[k]);
double tmp = Mat[k][j];
for(int p = j; p < m; p ++)
Mat[k][p]/=tmp;
V[k]/=tmp;
for(int p = ; p < n; p ++){
if(p != k && (fabs(Mat[p][j]) > eps)){
tmp = Mat[p][j];
for(int q = ; q < m; q ++)
Mat[p][q] -= tmp * Mat[k][q];
V[p] -= tmp*V[k];
}
}
k ++;
}
} int main()
{
scanf("%d%d%d",&h,&w,&d);
for(int i = ; i < h; i ++){
for(int j = ; j < w; j ++){
scanf("%d",&a[i][j]);
}
}for(int i = ; i < h - d + ; i ++ ){
for(int j = ; j < w - d + ; j ++){
scanf("%d",&b[i][j]);
}
}
int r = ;
for(int i = ; i < h - d + ; i ++){
for(int j = ; j < w - d + ; j ++){
for(int p = ; p < d; p ++){
for(int q = ; q < d; q ++){
Mat[r][p*d + q] = a[i + p][j + q];
}
}
V[r] = b[i][j];
r ++;
}
}
Gauss(r, d*d);
for(int i = ; i < d*d; i ++){
if(V[i] > -1e-) printf("%.0f",V[i] + 1e-);
else printf("%0.f",V[i] - 1e-);
if(i % d == d - ) printf("\n");
else printf(" ");
}
return ;
}
高斯消元_HihoCoderOffer6_03的更多相关文章
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- [高斯消元] POJ 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 614 Accepted: 286 Des ...
随机推荐
- Trie树 hihocoder 1014
Trie树 hihocoder 1014 传送门 字典树的基本应用 #include<queue> #include<cmath> #include<cstdio> ...
- 3.3.3 char 类型
char类型原本用于表示单个字符.不过,现在情况已经有所变化.如今,有些Unicode字符可以用一个char值描述,另外一些Unicode字符则需要两个 char 值. char类 ...
- 50. Spring Boot日志升级篇—log4j【从零开始学Spring Boot】
如果你使用的是spring boot 1.4.0版本的话,那么你可能需要配合以下文章进行学习 90.Spring Boot 1.4 使用log4j错误[从零开始学Spring Boot] Log4j是 ...
- Oracle 关于几个随机函数sys_guid、dbms_random.random、dbms_random.value(取随机的结果集)
sys_guid():SYS_GUID (),是Oracle 8i 后提供的函数.SYS_GUID产生并返回一个全球唯一的标识符(原始值)由16个字节组成.更适合多个数据库数据集成时使用(--源自百度 ...
- mdbtools使用
1.导入数据库到mysql(将key.mdb导入MySQL的test数据库,此时只导入表结构) mdb-schema key.mdb mysql | mysql -u root -p test 2.将 ...
- Yet another Number Sequence 矩阵快速幂
Let’s define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n ...
- Eclipse查看方法/类调用的方法
1.(首推)双击选中该方法/类,[Ctrl]+[Alt]+[H](Open Call Hierarchy) 2.(次推)选中该方法/类,[Ctrl]+[Shift]+[G](References) 3 ...
- linux下uart应用编程
目的:在用户空间通过读写uart设备文件,控制uart串口发送和接收数据. 在用户空间设置uart波特率.奇偶校验使能等操作是通过termios结构体和termios库函数完毕.须要在应用程序中包括t ...
- leetcode第一刷_Spiral Matrix
我认为这个题好无聊啊,好端端一个数组.干嘛要跟比巴卜一样转一圈输出呢. . 思想非常easy,每次从左到右.再从上到下,在从右到左,再从下到上.问题是每次到什么时候该改变方向.我的做法是用一个变量保存 ...
- CentOS7安装MariaDB成功的实践
前言 在自己的VPS的CentOS7安装Oracle的Mysql失败以后,我又开始找CentOS7上面安装MariaDB的方法,于是我找打了这篇文章:http://blog.csdn.net/defa ...