题目链接:https://vjudge.net/problem/ZOJ-3209

Treasure Map


Time Limit: 2 Seconds      Memory Limit: 32768 KB


Your boss once had got many copies of a treasure map. Unfortunately, all the copies are now broken to many rectangular pieces, and what make it worse, he has lost some of the pieces.
Luckily, it is possible to figure out the position of each piece in the original map. Now the boss asks you, the talent programmer, to make a complete treasure map with these pieces. You need to make only one complete map and it is not necessary to use all
the pieces. But remember, pieces are not allowed to overlap with each other (See sample 2).

Input

The first line of the input contains an integer T (T <= 500), indicating the number of cases.

For each case, the first line contains three integers n m p (1 <= nm <= 30, 1 <= p <= 500), the width and the height of the map, and the number of
pieces. Then p lines follow, each consists of four integers x1 y1 x2 y2 (0 <= x1 < x2 <= n, 0 <= y1 < y2 <= m), where (x1, y1) is the coordinate of the lower-left corner of the rectangular
piece, and (x2, y2) is the coordinate of the upper-right corner in the original map.

Cases are separated by one blank line.

Output

If you can make a complete map with these pieces, output the least number of pieces you need to achieve this. If it is impossible to make one complete map, just output -1.

Sample Input

3
5 5 1
0 0 5 5 5 5 2
0 0 3 5
2 0 5 5 30 30 5
0 0 30 10
0 10 30 20
0 20 30 30
0 0 15 30
15 0 30 30

Sample Output

1
-1
2

Hint

For sample 1, the only piece is a complete map.

For sample 2, the two pieces may overlap with each other, so you can not make a complete treasure map.

For sample 3, you can make a map by either use the first 3 pieces or the last 2 pieces, and the latter approach one needs less pieces.

题解:

题意:有p个矩形,每个矩形的坐标均已知,问能否找到若干个矩形(不能有重叠),组成一个n*m的大矩形?如果能?找出最小值。

两个注意点:

1.一开始以为覆盖的对象是“点”,结果发现在拼接处会重复覆盖。后来才知道覆盖的对象是一个“小格”,即单位正方形。这样才是以面积覆盖掉n*m的大矩形。代码中以(x,y)这个点代表了((x-1,y-1) (x,y))这个单位正方形,所以这个大矩形的横纵坐标从1开始。

2.在写Dance()函数时,忘了修改代码。由于此题要求求出最小值,所以即使当前找到某个值,也不一定是最小值,还要继续回溯。所以Dance()函数的类型是 void, 而不是bool。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const int MAXN = 1e3+10;
const int MAXM = 1e3+10;
const int maxnode = 1e6+10; struct DLX //矩阵的行和列是从1开始的
{
int n, m, size; //size为结点数
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN], S[MAXM]; //H为每一行的头结点,但不参与循环。S为每一列的结点个数
int ansd; void init(int _n, int _m) //m为列
{
n = _n;
m = _m;
for(int i = 0; i<=m; i++) //初始化列的头结点
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i<=n; i++) H[i] = -1; //初始化行的头结点
} void Link(int r, int c)
{
size++; //类似于前向星
Col[size] = c;
Row[size] = r;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-1) H[r] = L[size] = R[size] = size; //当前行为空
else //当前行不为空: 头插法,无所谓顺序,因为Row、Col已经记录了位置
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c) //c是列的编号, 不是结点的编号
{
L[R[c]] = L[c]; R[L[c]] = R[c]; //在列的头结点的循环队列中, 越过列c
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
{
//被删除结点的上下结点仍然有记录
U[D[j]] = U[j];
D[U[j]] = D[j];
S[Col[j]]--;
}
} void resume(int c)
{
L[R[c]] = R[L[c]] = c;
for(int i = U[c]; i!=c; i = U[i])
for(int j = L[i]; j!=i; j = L[j])
{
U[D[j]] = D[U[j]] = j;
S[Col[j]]++;
}
} void Dance(int d)
{
if(d>=ansd) return;
if(R[0]==0)
{
ansd = d;
return;
} int c = R[0];
for(int i = R[0]; i!=0; i = R[i]) //挑结点数最少的那一列,否则会超时,那为什么呢?
if(S[i]<S[c])
c = i; remove(c);
for(int i = D[c]; i!=c; i = D[i])
{
for(int j = R[i]; j!=i; j = R[j]) remove(Col[j]);
Dance(d+1);
for(int j = L[i]; j!=i; j = L[j]) resume(Col[j]);
}
resume(c);
}
}; DLX dlx;
int main()
{
int T;
int n, m, p;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &p);
dlx.init(p, n*m);
for(int i = 1; i<=p; i++)
{
int x1, x2, y1, y2;
scanf("%d%d%d%d",&x1, &y1, &x2, &y2);
for(int x = x1+1; x<=x2; x++)
for(int y = y1+1; y<=y2; y++)
dlx.Link(i, (x-1)*m+y);
}
dlx.ansd = INF;
dlx.Dance(0);
printf("%d\n", dlx.ansd==INF?-1:dlx.ansd);
}
return 0;
}

ZOJ3209 Treasure Map —— Danc Links 精确覆盖的更多相关文章

  1. zoj 3209.Treasure Map(DLX精确覆盖)

    直接精确覆盖 开始逐行添加超时了,换成了单点添加 #include <iostream> #include <cstring> #include <cstdio> ...

  2. ZOJ 3209 Treasure Map (Dancing Links 精确覆盖 )

    题意 :  给你一个大小为 n * m 的矩形 , 坐标是( 0 , 0 ) ~ ( n , m )  .然后给你 p 个小矩形 . 坐标是( x1 , y1 ) ~ ( x2 , y2 ) , 你选 ...

  3. hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)

    hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...

  4. 【转】Dancing Links精确覆盖问题

    原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文    精确覆盖问题    解决精确覆盖问题    舞蹈步骤    效率分析 ...

  5. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  6. ZOJ 3209 Treasure Map (Dancing Links)

    Treasure Map Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  7. HDU 3111 Sudoku ( Dancing Links 精确覆盖模型 )

    推荐两篇学DLX的博文: http://bbs.9ria.com/thread-130295-1-1.html(这篇对DLX的工作过程演示的很详细) http://yzmduncan.iteye.co ...

  8. POJ3074 Sudoku —— Dancing Links 精确覆盖

    题目链接:http://poj.org/problem?id=3074 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  9. HUST1017 Exact cover —— Dancing Links 精确覆盖 模板题

    题目链接:https://vjudge.net/problem/HUST-1017 1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 7673 次提交 3898 次 ...

随机推荐

  1. php那些坑

    1.创建数组不是new array(),是$aaa=array(),没有new,数组可以传入键值$aaa=array("key"=>"value"); 2 ...

  2. 把项目变成intellij idea和eclipse项目

    就通过maven把它build成一个IDE项目,执行以下命令,打开CMD: $ cd 项目名 $ mvn eclipse:eclipse or mvn idea:idea

  3. dos中定义变量与获取常见的引用变量以及四则运算、备份文件(set用法)

    在dos中使用set定义变量: set  a=8              (注意等号两边没有空格) 引用变量如: echo  %a%        将打印a的值 (%a%是获取变量a的值) dos中 ...

  4. POJ 2185 Milking Grid [二维KMP next数组]

    传送门 直接转田神的了: Milking Grid Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 6665   Accept ...

  5. Android Service服务-(转)

    Service是Android系统中提供的四大组件之一.它是运行在后台的一种服务,一般声明周期较长,不直接与用户进行交互.   服务不能自己运行,需要通过调用Context.startService( ...

  6. 在 Windows 下用 TDM-GCC(MinGW)开发 DLL 涉及到数据同步锁及 DLL 初始化终止化函数的问题

    在 Windows 下用 TDM-GCC(MinGW)开发 DLL 如果要用到数据同步锁,理论上可以采用 Windows API 提供的临界区实现(需要用到的函数有 InitializeCritica ...

  7. windows下安装python、环境设置、多python版本的切换、pyserial与多版本python安装、windows命令行下切换目录

    1.windows下安装python 官网下载安装即可 2.安装后的环境设置 我的电脑--属性--高级--设置path的地方添加python安装目录,如C:\Python27;C:\Python33 ...

  8. raspi集成库及安装

    原文:http://blog.csdn.net/xukai871105/article/details/12684617   树莓派来自国外,国外嵌入式开源领域具有良好的分享精神,树莓派各种集成库也层 ...

  9. js 中 Map/Set 集合

      Map Map是一组键值对的结构,具有极快的查找速度. 举个例子,假设要根据同学的名字查找对应的成绩,如果用Array实现,需要两个Array: 1 var names = ['Michael', ...

  10. 【转】 nginx重定向规则详细介绍

    rewrite命令 nginx的rewrite相当于apache的rewriterule(大多数情况下可以把原有apache的rewrite规则加上引号就可以直接使用),它可以用在server,loc ...