题目链接:https://vjudge.net/problem/ZOJ-3209

Treasure Map


Time Limit: 2 Seconds      Memory Limit: 32768 KB


Your boss once had got many copies of a treasure map. Unfortunately, all the copies are now broken to many rectangular pieces, and what make it worse, he has lost some of the pieces.
Luckily, it is possible to figure out the position of each piece in the original map. Now the boss asks you, the talent programmer, to make a complete treasure map with these pieces. You need to make only one complete map and it is not necessary to use all
the pieces. But remember, pieces are not allowed to overlap with each other (See sample 2).

Input

The first line of the input contains an integer T (T <= 500), indicating the number of cases.

For each case, the first line contains three integers n m p (1 <= nm <= 30, 1 <= p <= 500), the width and the height of the map, and the number of
pieces. Then p lines follow, each consists of four integers x1 y1 x2 y2 (0 <= x1 < x2 <= n, 0 <= y1 < y2 <= m), where (x1, y1) is the coordinate of the lower-left corner of the rectangular
piece, and (x2, y2) is the coordinate of the upper-right corner in the original map.

Cases are separated by one blank line.

Output

If you can make a complete map with these pieces, output the least number of pieces you need to achieve this. If it is impossible to make one complete map, just output -1.

Sample Input

3
5 5 1
0 0 5 5 5 5 2
0 0 3 5
2 0 5 5 30 30 5
0 0 30 10
0 10 30 20
0 20 30 30
0 0 15 30
15 0 30 30

Sample Output

1
-1
2

Hint

For sample 1, the only piece is a complete map.

For sample 2, the two pieces may overlap with each other, so you can not make a complete treasure map.

For sample 3, you can make a map by either use the first 3 pieces or the last 2 pieces, and the latter approach one needs less pieces.

题解:

题意:有p个矩形,每个矩形的坐标均已知,问能否找到若干个矩形(不能有重叠),组成一个n*m的大矩形?如果能?找出最小值。

两个注意点:

1.一开始以为覆盖的对象是“点”,结果发现在拼接处会重复覆盖。后来才知道覆盖的对象是一个“小格”,即单位正方形。这样才是以面积覆盖掉n*m的大矩形。代码中以(x,y)这个点代表了((x-1,y-1) (x,y))这个单位正方形,所以这个大矩形的横纵坐标从1开始。

2.在写Dance()函数时,忘了修改代码。由于此题要求求出最小值,所以即使当前找到某个值,也不一定是最小值,还要继续回溯。所以Dance()函数的类型是 void, 而不是bool。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const int MAXN = 1e3+10;
const int MAXM = 1e3+10;
const int maxnode = 1e6+10; struct DLX //矩阵的行和列是从1开始的
{
int n, m, size; //size为结点数
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN], S[MAXM]; //H为每一行的头结点,但不参与循环。S为每一列的结点个数
int ansd; void init(int _n, int _m) //m为列
{
n = _n;
m = _m;
for(int i = 0; i<=m; i++) //初始化列的头结点
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i<=n; i++) H[i] = -1; //初始化行的头结点
} void Link(int r, int c)
{
size++; //类似于前向星
Col[size] = c;
Row[size] = r;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-1) H[r] = L[size] = R[size] = size; //当前行为空
else //当前行不为空: 头插法,无所谓顺序,因为Row、Col已经记录了位置
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c) //c是列的编号, 不是结点的编号
{
L[R[c]] = L[c]; R[L[c]] = R[c]; //在列的头结点的循环队列中, 越过列c
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
{
//被删除结点的上下结点仍然有记录
U[D[j]] = U[j];
D[U[j]] = D[j];
S[Col[j]]--;
}
} void resume(int c)
{
L[R[c]] = R[L[c]] = c;
for(int i = U[c]; i!=c; i = U[i])
for(int j = L[i]; j!=i; j = L[j])
{
U[D[j]] = D[U[j]] = j;
S[Col[j]]++;
}
} void Dance(int d)
{
if(d>=ansd) return;
if(R[0]==0)
{
ansd = d;
return;
} int c = R[0];
for(int i = R[0]; i!=0; i = R[i]) //挑结点数最少的那一列,否则会超时,那为什么呢?
if(S[i]<S[c])
c = i; remove(c);
for(int i = D[c]; i!=c; i = D[i])
{
for(int j = R[i]; j!=i; j = R[j]) remove(Col[j]);
Dance(d+1);
for(int j = L[i]; j!=i; j = L[j]) resume(Col[j]);
}
resume(c);
}
}; DLX dlx;
int main()
{
int T;
int n, m, p;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &p);
dlx.init(p, n*m);
for(int i = 1; i<=p; i++)
{
int x1, x2, y1, y2;
scanf("%d%d%d%d",&x1, &y1, &x2, &y2);
for(int x = x1+1; x<=x2; x++)
for(int y = y1+1; y<=y2; y++)
dlx.Link(i, (x-1)*m+y);
}
dlx.ansd = INF;
dlx.Dance(0);
printf("%d\n", dlx.ansd==INF?-1:dlx.ansd);
}
return 0;
}

ZOJ3209 Treasure Map —— Danc Links 精确覆盖的更多相关文章

  1. zoj 3209.Treasure Map(DLX精确覆盖)

    直接精确覆盖 开始逐行添加超时了,换成了单点添加 #include <iostream> #include <cstring> #include <cstdio> ...

  2. ZOJ 3209 Treasure Map (Dancing Links 精确覆盖 )

    题意 :  给你一个大小为 n * m 的矩形 , 坐标是( 0 , 0 ) ~ ( n , m )  .然后给你 p 个小矩形 . 坐标是( x1 , y1 ) ~ ( x2 , y2 ) , 你选 ...

  3. hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)

    hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...

  4. 【转】Dancing Links精确覆盖问题

    原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文    精确覆盖问题    解决精确覆盖问题    舞蹈步骤    效率分析 ...

  5. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  6. ZOJ 3209 Treasure Map (Dancing Links)

    Treasure Map Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  7. HDU 3111 Sudoku ( Dancing Links 精确覆盖模型 )

    推荐两篇学DLX的博文: http://bbs.9ria.com/thread-130295-1-1.html(这篇对DLX的工作过程演示的很详细) http://yzmduncan.iteye.co ...

  8. POJ3074 Sudoku —— Dancing Links 精确覆盖

    题目链接:http://poj.org/problem?id=3074 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

  9. HUST1017 Exact cover —— Dancing Links 精确覆盖 模板题

    题目链接:https://vjudge.net/problem/HUST-1017 1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 7673 次提交 3898 次 ...

随机推荐

  1. mark一下。hadoop分布式系统搭建

    用于测试,我用4台虚拟机搭建成了hadoop结构 我用了两个台式机.一个xp系统,一个win7系统.每台电脑装两个虚拟机,要不然内存就满了. 1.安装虚拟机环境 Vmware,收费产品,占内存较大. ...

  2. 路飞学城详细步骤 part2

    一 显示课程列表 需求:当你点击课程,course.vue在 <router-view>渲染,并不需要你进行其他点击,所欲的课程列表直接在前端显示,数据是从数据库拿到的. 补充1:生命周期 ...

  3. 自己写的java返回结果集封装

    import java.io.Serializable; import com.fasterxml.jackson.core.JsonProcessingException; import com.f ...

  4. uva 11995 判别数据类型

    Problem I I Can Guess the Data Structure! There is a bag-like data structure, supporting two operati ...

  5. poj 3608 凸包间的最小距离

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7632   Accepted:  ...

  6. 装B技能GET起来!Apple Pay你会用了吗?

    科技圈儿有一个自带光环的品牌 它每次一有任何动静 不用宣传 也不用刻意营销 消息还是能传天下 2月18日 你敢说你的朋友圈儿没有被下面这个词儿刷屏? Apple Pay 这不,我就跟着凑凑热闹,开个小 ...

  7. Lighttpd 服务器的安装

    https://www.cnblogs.com/rongfengliang/articles/3503228.html

  8. 临远的spring security教程

    为啥选择Spring Security 欢迎阅读咱们写的Spring Security教程,咱们既不想写一个简单的入门教程,也不想翻译已有的国外教程.咱们这个教程就是建立在咱们自己做的OA的基础上,一 ...

  9. js如何获取table或者ul中鼠标点的行号和内容

    <html> <head> <script language="javascript"> function doclick() { var td ...

  10. nc和telnet配合使用

    nc -l 9932 -c  用nc监听9932端口 telnet 180.150.184.115 29933  telnet 29932 端口