Let’s move from initial matrix to the bipartite graph. The matrix elements (i, j) for which i + j are even should be place to one part, the matrix elements (i, j) for which i + j are uneven should be place to another part. The edges are corresponding to squares which are situated side by side. After that let’s weigh the edges. The edges which connect equal elements of matrix have weights 0, for unequal elements – weight 1. After that the problem is reduced to finding of the maximum independent edge set with minimal weight. Substantiation of above-stated is following: an answer to the problem represents a partitioning of initial matrix for pairs. Note that for any partitioning minimal number of changing matrix elements corresponds to the number of pairs on unequal elements. So in the optimal partitioning the number of pairs of equal elements is maximum. For solving minimum-cost flow problem is needed to use some effective algorithm. For example, Dijkstra algorithm with heap adding conversion of edges weights from Johnson's algorithm.

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1e5+11;
const int oo = 0x3f3f3f3f;
int to[maxn<<1],cost[maxn<<1],cap[maxn<<1],flow[maxn<<1],nxt[maxn<<1];
int head[maxn],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v,int c,int w){
to[tot]=v;
cap[tot]=c;
flow[tot]=0;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
swap(u,v);
to[tot]=v;
cap[tot]=0;
flow[tot]=0;
cost[tot]=-w;
nxt[tot]=head[u];
head[u]=tot++;
}
struct QUEUE{
int que[maxn];
int front,rear;
void init(){front=rear=0;}
void push(int x){que[rear++]=x;}
int pop(){return que[front++];}
bool empty(){return front==rear;}
}que;
int n,m,s,t;
bool vis[maxn];
int pre[maxn],dis[maxn];
bool spfa(){
que.init();
memset(vis,0,sizeof vis);
memset(pre,-1,sizeof pre);
memset(dis,oo,sizeof dis);
que.push(s);vis[s]=1;dis[s]=0;
while(!que.empty()){
int u=que.pop(); vis[u]=0;
for(int i = head[u]; ~i; i = nxt[i]){
int v=to[i],c=cap[i],f=flow[i],w=cost[i];
if(c>f&&dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
pre[v]=i;
if(!vis[v]){
que.push(v);
vis[v]=1;
}
}
}
}
if(dis[t]==oo) return 0;
else return 1;
}
int mcmf(){
int mc=0,mf=0;
while(spfa()){
int tf=oo+1;
for(int i = pre[t]; ~i; i = pre[to[i^1]]){
tf=min(tf,cap[i]-flow[i]);
}
mf+=tf;
for(int i = pre[t]; ~i; i = pre[to[i^1]]){
flow[i]+=tf;
flow[i^1]-=tf;
}
mc+=dis[t]*tf;
}
return mc;
}
#define rep(i,j,k) for(int i = j; i <= k; i++)
#define repp(i,j,k) for(int i = j; i < k; i++)
#define repe(i,u) for(int i = head[u]; ~i; i = nxt[i])
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define println(a) printf("%d\n",a)
#define printbk(a) printf("%d ",a)
#define print(a) printf("%d",a) int G[100][100],R,C,n1;
inline int ID(int i,int j){
return (i-1)*C+j;
}
inline int chai(int x){
return R*C+x;
}
inline bool black(int i,int j){
return i+j &1;
}
int dx[]={0,1,0,-1};
int dy[]={1,0,-1,0};
int main(){
while(scann(R,C)!=EOF){
init();
rep(i,1,R) rep(j,1,C) scan(G[i][j]);
s=R*C+1;t=s+1;n=t;
rep(i,1,R){
rep(j,1,C){
if(!black(i,j))continue;
rep(d,0,3){
int xx=i+dx[d],yy=j+dy[d];
if(xx<1||xx>R||yy<1||yy>C)continue;
if(G[xx][yy]==G[i][j]){
add(ID(i,j),ID(xx,yy),1,0);
}
else{
add(ID(i,j),ID(xx,yy),1,1);
}
}
}
}
rep(i,1,R) rep(j,1,C){
if(black(i,j)) add(s,ID(i,j),1,0);
else add(ID(i,j),t,1,0);
}
println(mcmf());
}
return 0;
}

Codeforces 316C2 棋盘模型的更多相关文章

  1. D. Three Pieces(dp,array用法,棋盘模型)

    https://codeforces.com/contest/1065/problem/D 题意 给你一个方阵,里面的数字从1~nn,你需要从标号为1的格子依次走到标号为nn,在每一个格子你有两个决策 ...

  2. Nanami's Digital Board CodeForces - 434B (棋盘dp)

    大意: 给定01矩阵, m个操作, 操作1翻转一个点, 操作2求边界包含给定点的最大全1子矩阵 暴力枚举矩形高度, 双指针统计答案 #include <iostream> #include ...

  3. Codeforces - tag::flows 大合集 [完坑 x14]

    589F 题意:给出n个时间区间,每个区间挑定长的非连续区间,求不同个区间不存在时间冲突的最大定长,输出乘上n 二分图模型+二分长度,左顶点集为区间编号,右顶点集为时间编号(1...10000),汇点 ...

  4. Codeforces 最大流 费用流

    这套题目做完后,一定要反复的看! 代码经常出现的几个问题: 本机测试超时: 1.init函数忘记写. 2.addedge函数写成add函数. 3.边连错了. 代码TLE: 1.前向星边数组开小. 2. ...

  5. 「2017 山东一轮集训 Day4」棋盘(费用流)

    棋盘模型 + 动态加边 #include<cstdio> #include<algorithm> #include<iostream> #include<cs ...

  6. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  7. [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ——by洛谷 https://www. ...

  8. [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)

    转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...

  9. JAVA课程设计+五子棋(团队博客)

    JAVA课程设计 利用所学习的JAVA知识设计一个五子棋小游戏 1.团队名称.团队成员介绍(菜鸟三人组) 杨泽斌[组长]:201521123049 网络1512 叶文柠[组员]:20152112305 ...

随机推荐

  1. 返回键的复写onBackPressed()介绍

    本篇文章是对Android中返回键的复写onBackPressed()进行了详细的分析介绍,需要的朋友参考下 在android开发中,当不满足触发条件就按返回键的时候,就要对此进行检测.尤其是当前Ac ...

  2. JavaScript 书籍推荐(转)

    作者:宋学彦链接:https://www.zhihu.com/question/19713563/answer/23068003来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  3. 框架之 hibernate之各种查询

    1. Hibernate的查询方式 2. Hibernate的查询策略 案例:使用Hibernate完成查询所有联系人功能 需求分析 1. 完成所有的联系人的查询 技术分析之Hibernate框架的查 ...

  4. bzoj 1568 李超线段树

    博客:http://www.cnblogs.com/mangoyang/p/9979465.html 李超线段树支持两种操作:1:插入一条直线.2:询问在x = c与这些直线的交点中最大的y坐标. 插 ...

  5. koa的教程

    https://github.com/bmcmahen/koa-mongo-sessionhttp://www.fkwebs.com/2333.htmlhttps://segmentfault.com ...

  6. bootstrap.js 文件使用指南

    介绍 使用 Bootstrap v3.3.7 时,需要引入三个脚本文件. https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.m ...

  7. matlab任务:FCM分类

    一个朋友让帮忙做图像分类,用FCM聚类算法,网上查了一下,FCM基本都是对一幅图像进行像素的分类,跟他说的任务不太一样,所要做的是将一个文件夹里的一千多幅图像进行分类.图像大概是这个样子的(是25*2 ...

  8. jquery easyui datagrid 多选只能获取一条数据

    DataGrid属性: singleSelect ------如果为true,则只允许选择一行: idField ------- 指明哪一个字段是标识字段: 方法: 一:getSelections-- ...

  9. 【ionic App问题总结系列】ionic 如何更新app版本

    ionic 如何进行自动更新 ionic App更新有两种方式:第一种是普通的从远程下载apk,安装并覆盖旧版本.另外一种就是采用替换www文件夹的内容,实现应用内更新,而无需下载安装apk. 这篇文 ...

  10. DotNetty 版 mqtt 开源客户端 (MqttFx)

    一.DotNetty背景介绍 某天发现 dotnet  是个好东西,就找了个项目来练练手.于是有了本文的 Mqtt 客户端   (github:  MqttFx ) DotNetty是微软的Azure ...