洛谷P1034 矩形覆盖
P1034 矩形覆盖
题目描述
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。
这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入输出格式
输入格式:
n k xl y1 x2 y2 ... ...
xn yn (0<=xi,yi<=500)
输出格式:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
输入输出样例
4 2
1 1
2 2
3 6
0 7
4
说一下如何判断两矩形重叠
因为我们把所有点按照x递增,y递增的顺序排序,所以下一个矩形与当前矩形只有可能有一条边重合,如上图所示,当前矩形的下边界一定在上个矩形下边界上边,只要保证这个下边界也在上个矩形上边界的下边就可以确定两个矩形重合了
#include<iostream>
#include<cstdio>
#include<algorithm>
#define maxn 52
using namespace std;
int n,k,ans=0x7fffffff;
struct node{
int x,y;
bool operator < (const node b)const{
if(x==b.x)return y<b.y;
return x<b.x;
}
}a[maxn];
struct Node{
int x1,y1,x2,y2;
}be[];
void dfs(int pos,int cnt,int sum){
if(sum>=ans)return;
if(pos>n){
ans=min(ans,sum);
return;
}
if(cnt>k)return;
be[cnt].x1=be[cnt].x2=a[pos].x;
be[cnt].y1=be[cnt].y2=a[pos].y;
for(int i=pos;i<=n;i++){
be[cnt].x1=min(be[cnt].x1,a[i].x);
be[cnt].y1=min(be[cnt].y1,a[i].y);
be[cnt].x2=max(be[cnt].x2,a[i].x);
be[cnt].y2=max(be[cnt].y2,a[i].y);
for(int j=;j<cnt;j++){
if(be[cnt].x1==be[j].x2&&be[cnt].y1<=be[j].y2)return;
}
dfs(i+,cnt+,sum+(be[cnt].x2-be[cnt].x1)*(be[cnt].y2-be[cnt].y1));
}
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].y,&a[i].x);
sort(a+,a+n+);
dfs(,,);
printf("%d",ans);
}
洛谷P1034 矩形覆盖的更多相关文章
- 洛谷 P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1(1,11,1),p_2p2( ...
- 洛谷 - P1034 - 矩形覆盖 - dfs
https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...
- [NOIP2002] 提高组 洛谷P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷——P1034 矩形覆盖
https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...
- 洛谷 P2218 [HAOI2007]覆盖问题 解题报告
P2218 [HAOI2007]覆盖问题 题目描述 某人在山上种了\(N\)棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他 ...
- P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷 P1191 矩形 题解
P1191 矩形 题目描述 给出一个 \(n \times n\)的矩阵,矩阵中,有些格子被染成白色,有些格子被染成黑色,现要求矩阵中白色矩形的数量 输入格式 第一行,一个整数\(n\),表示矩形的大 ...
- 洛谷——P2082 区间覆盖(加强版)
P2082 区间覆盖(加强版) 题目描述 已知有N个区间,每个区间的范围是[si,ti],请求出区间覆盖后的总长. 输入输出格式 输入格式: N s1 t1 s2 t2 …… sn tn 输出格式: ...
- 洛谷 P1324 矩形分割
P1324 矩形分割 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切 ...
随机推荐
- hibernate 框架搭建
Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibernate可以自动生成SQL语句,自 ...
- Java8中聚合操作collect、reduce方法详解
Stream的基本概念 Stream和集合的区别: Stream不会自己存储元素.元素储存在底层集合或者根据需要产生.Stream操作符不会改变源对象.相反,它会返回一个持有结果的新的Stream.3 ...
- python-Django监控系统二次开发Nagios
1.Nagios安装 yum install -y nagios.i686 yum install -y nagios-plugins-all.i686 安装完后会在apache的配置文件目录下/et ...
- leetcode 201. Bitwise AND of Numbers Range(位运算,dp)
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...
- resin启动时报错com.caucho.config.LineConfigException的解决
resin启动时报以下错误: [13:32:10.120] {main} WEB-INF/web.xml:42: 'listener-class' is an unknown property of ...
- hdp 集群问题解决记录
2019-04-23 14:16:21,769 WARN namenode.FSImage (EditLogFileInputStream.java:scanEditLog(359)) - Caugh ...
- [转]CSS3盒模型display:box详解
时间:2014-02-25来源:网络作者:未知编辑:RGB display:box;box-flex是css3新添加的盒子模型属性,它的出现可以解决我们通过N多结构.css实现的布局方式.经典的一个布 ...
- Centos6.5上的iptables
1.Centos6.5默认开启了iptables 当Centos6.5上安装了MySQL后,在远程连接它,如果出现10060的错误,说明iptables在起作用. 关闭iptables即可,sudo ...
- POJ 1503 Integer Inquiry(大数相加)
一.Description One of the first users of BIT's new supercomputer was Chip Diller. He extended his exp ...
- POJ1365:素数
Prime Land Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3552 Accepted: 1609 Descri ...