题目大意:给一棵树,问有多少条路径长度小于等于$k$

题解:点分治

卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 40010
const int inf = 0x3f3f3f3f;
inline int max(int a, int b) {return a > b ? a : b;} int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void add(int a, int b, int c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b], c}; head[b] = cnt;
} bool vis[maxn];
namespace Center_of_Gravity {
int sz[maxn], __nodenum;
int root, MIN;
#define n __nodenum
void __getroot(int u, int fa) {
sz[u] = 1;
int MAX = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa && !vis[v]) {
__getroot(v, u);
sz[u] += sz[v];
MAX = max(MAX, sz[v]);
}
}
MAX = max(MAX, n - sz[u]);
if (MAX < MIN) MIN = MAX, root = u;
}
int getroot(int u, int nodenum = 0) {
n = nodenum ? nodenum : sz[u];
MIN = inf;
__getroot(u, 0);
return root;
}
#undef n
}
using Center_of_Gravity::getroot; int n, k, ans;
int S[maxn], tot;
void getlist(int u, int fa, int val) {
if (val <= k) S[++tot] = val;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa && !vis[v]) getlist(v, u, val + e[i].w);
}
}
int calc(int u, int val) {
tot = 0;
getlist(u, 0, val);
std::sort(S + 1, S + tot + 1);
int l = 1, r = tot, res = 0;
while (l <= r) {
if (S[l] + S[r] <= k) res += r - l, l++;
else r--;
}
return res;
}
void solve(int u) {
vis[u] = true;
ans += calc(u, 0);
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!vis[v]) {
ans -= calc(v, e[i].w);
solve(getroot(v));
}
}
} int main() {
scanf("%d", &n);
for (int i = 1, a, b, c; i < n; i++) {
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
scanf("%d", &k);
solve(getroot(1, n));
printf("%d\n", ans);
return 0;
}

  

[洛谷P4178]Tree的更多相关文章

  1. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  2. POJ1471 Tree/洛谷P4178 Tree

    Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...

  3. 洛谷P4178 Tree (点分治)

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式:   N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下 ...

  4. 洛谷 P4178 Tree —— 点分治

    题目:https://www.luogu.org/problemnew/show/P4178 这道题要把 dep( dis? ) 加入一个 tmp 数组里,排序,计算点对,复杂度很美: 没有写 sor ...

  5. 洛谷P4178 Tree (算竞进阶习题)

    点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...

  6. 2018.07.20 洛谷P4178 Tree(点分治)

    传送门 又一道点分治. 直接维护子树内到根的所有路径长度,然后排序+双指针统计答案. 代码如下: #include<bits/stdc++.h> #define N 40005 using ...

  7. 洛谷 P4178 Tree

    #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #inclu ...

  8. [洛谷P4178] Tree (点分治模板)

    题目略了吧,就是一棵树上有多少个点对之间的距离 \(\leq k\) \(n \leq 40000\) 算法 首先有一个 \(O(n^2)\) 的做法,枚举每一个点为起点,\(dfs\) 一遍可知其它 ...

  9. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

随机推荐

  1. Webpack4 学习笔记三 ES6+语法降级为ES5

    前言 此内容是个人学习笔记,以便日后翻阅.非教程,如有错误还请指出 Webpack 将es6.es7语法降级为es5 需要通过 babel JavaScript编译器. 安装: npm i babel ...

  2. 使用winsw将spring-boot jar包注册成windows服务

    背景:最近的项目中使用spring-boot, https://github.com/kohsuke/winsw/releases <service> <id>YJPSS< ...

  3. ElasticSearch 集群原理

    节点 一个运行中的EasticSearch 被称为一个节点,而集群是由多个用于拥有相同cluster.name配置的节点组成,它们共同承担数据和负载的压力,当有新的节点加入或移除,集群会重新平均分布所 ...

  4. foreachRDD,foreach,foreachPartition区别联系

    foreachRDD(SparkStreaming): SparkStreaming是流式实时处理数据,就是将数据流按照定义的时间进行分割(就是"批处理").每一个时间段内处理到的 ...

  5. Python全栈day 01

    Python全栈day 01 一.计算机认识 用户 软件,类似微信.QQ.游戏等应用程序,由程序员编写,在系统中运行,完成各种活动,方便人们使用. 操作系统,主要分为windows系统.Linux系统 ...

  6. 解决VM-tools安装后,仍然无法与虚拟机复制

    重新安装,不同是运行这个: vmware-install.real.pl 并执行 sudo apt-get install open-vm-tools-desktop 重启

  7. 01,jupyter环境安装

    jupyter notebook环境安装 一.什么是Jupyter Notebook? 1. 简介 Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过程计算:开发.文 ...

  8. javascript类式继承模式#1——默认模式

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 如何写一套下拉刷新的控件?《MJRefresh原理浅析》(附Demo下载地址)

    相信大家有很多人在做项目的时候都在使用MJRefresh 控件来实现下拉刷新的功能: MJRefresh经过不断的重构与更新迭代,现在不管是功能上还是代码结构上都是相当不错的,都是很值我们去学习的. ...

  10. 4G来临,短视频社交分享应用或井喷

    因为工作的原因,接触短视频社交应用的时间相对较多,不管是自家的微视,还是别人家的Vine.玩拍.秒拍等,都有体验过.随着时间的推移,我愈发感受到有一股似曾相识的势能正在某个地方慢慢积聚,直到今天我才猛 ...