https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables

1。

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam

(midterm exam)2

final exam

89

7921

96

72

5184

74

94

8836

87

69

4761

78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ(x)=θ0+θ1x1+θ2x2, where x1 is the midterm score and x2 is (midterm score)2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature x2(2)? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

答案: -0.37

平均值 :(7921+5184+8836+4761)/4 = 6675.5

Max-Min: 8836-4761=4075

x=(xn-平均值)/(Max-Min)

training example 2   (5184-6675.5)/4075=-0.37

2。

You run gradient descent for 15 iterations

with α=0.3 and compute J(θ) after each

iteration. You find that the value of J(θ) increases over

time. Based on this, which of the following conclusions seems

most plausible?

α=0.3 is an effective choice of learning rate.

Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

Rather than use the current value of α, it'd be more promising to try a smaller value of α (say α=0.1).

答案:B. Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

a越大下降越快,a越小下降越慢。

3。

Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is θ=(XTX)−1XTy. For the given values of m and n, what are the dimensions of θ, X, and y in this equation?

X is 23×6, y is 23×6, θ is 6×6

X is 23×5, y is 23×1, θ is 5×5

X is 23×6, y is 23×1, θ is 6×1

X is 23×5, y is 23×1, θ is 5×1

答案:C. X is 23×6, y is 23×1, θ is 6×1

X n+1 列 ,  y 1 列 , θ  n+1 行

4。

Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

Gradient descent, since it will always converge to the optimal θ.

The normal equation, since it provides an efficient way to directly find the solution.

Gradient descent, since (XTX)−1 will be very slow to compute in the normal equation.

The normal equation, since gradient descent might be unable to find the optimal θ.

答案: B. The normal equation, since it provides an efficient way to directly find the solution.

比较梯度下降与normal equation

梯度下降需要Feature Scaling;normal equation 简单方便不需Feature Scaling。

normal equation 时间复杂度较大,适用于Feature数量较少的情况。

当Feature数量<100000时  Normal Equation
当Feature数量>100000时  Gradient Descent
 

5。

Which of the following are reasons for using feature scaling?

It speeds up solving for θ using the normal equation.

It prevents the matrix XTX (used in the normal equation) from being non-invertable (singular/degenerate).

It speeds up gradient descent by making it require fewer iterations to get to a good solution.

It is necessary to prevent gradient descent from getting stuck in local optima.

答案 :C. It speeds up gradient descent by making it require fewer iterations to get to a good solution.

上一题也考到这个点:normal equation 不需要 Feature Scaling,排除AB, 特征缩放减少迭代数量,加快梯度下降,然而不能防止梯度下降陷入局部最优。

Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables的更多相关文章

  1. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  2. Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial

    https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5  ...

  3. [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  5. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)

    ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...

  8. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

随机推荐

  1. CRC(16位)多项式为 X16+X15+X2+1

    其对应校验二进制位列为1 1000 0000 0000 0101,可这有17位啊,我怎么和16位信息进行异或啊?是不是不要最高位的1 你没有弄明白crc的意思.这17位后面再添上16个零,然后开始抑或 ...

  2. Nand flash uboot 命令详解

    转:http://blog.chinaunix.net/uid-14833587-id-76513.html nand info & nand device 显示flash的信息: DM365 ...

  3. JAX-WS编写webservice

    1.新建一个Java工程 2.创建要发布的类 package com.linjian.webservice; import javax.jws.WebMethod; import javax.jws. ...

  4. 解决The prefix 'context' for element 'context:component-scan' is not bound

    <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w ...

  5. ElastcSearch的Mapping映射建立

    根据oracle的字段来建立ElasticSearch的Mapping public class Start { private static Logger log = LoggerFactory.g ...

  6. 从头认识Spring-1.7 如何通过属性注入Bean?(1)-如何通过属性向对象注入值?

    这一章节我们来讨论一下如何通过属性注入Bean? 这一章节分为两部分,第一部分我们通过属性向对象注入值,第二部分我们通过属性向对象注入还有一个对象的引用. 1.如何通过属性向对象注入值? (1)dom ...

  7. block传值以及利用block封装一个网络请求类

    1.block在俩个UIViewController间传值 近期刚学了几招block 的高级使用方法,事实上就是利用block语法在俩个UIViewController之间传值,在这里分享给刚開始学习 ...

  8. 《学习bash》笔记--进程处理

    1.进程ID和作业编号  当通过附加&号后执行命令时.shell会响应例如以下: $ ls & [1] 3318 当中[1]是作业号,3318是进程号. 一个后台进程完毕时.shell ...

  9. object-c 框架之经常使用结构体

    Foundation 框架定义经常使用结构体.结构体採用object-c 定义:经常使用NSSRange,NSPoint.NSSize,NSRect等 一.NSRange 创建范围结构体. 方法:NS ...

  10. 模式识别:利用MATLAB生成模式类

    近期開始了模式识别的学习,在此之前须要对模式和模式类的概念有一个了解,这里使用MATLAB实现一些模式类的生成.在此之前,引用百科上对于模式识别和模式类的定义.也算加深以下了解: 模式识别(Patte ...