https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables

1。

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam

(midterm exam)2

final exam

89

7921

96

72

5184

74

94

8836

87

69

4761

78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ(x)=θ0+θ1x1+θ2x2, where x1 is the midterm score and x2 is (midterm score)2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature x2(2)? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

答案: -0.37

平均值 :(7921+5184+8836+4761)/4 = 6675.5

Max-Min: 8836-4761=4075

x=(xn-平均值)/(Max-Min)

training example 2   (5184-6675.5)/4075=-0.37

2。

You run gradient descent for 15 iterations

with α=0.3 and compute J(θ) after each

iteration. You find that the value of J(θ) increases over

time. Based on this, which of the following conclusions seems

most plausible?

α=0.3 is an effective choice of learning rate.

Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

Rather than use the current value of α, it'd be more promising to try a smaller value of α (say α=0.1).

答案:B. Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

a越大下降越快,a越小下降越慢。

3。

Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is θ=(XTX)−1XTy. For the given values of m and n, what are the dimensions of θ, X, and y in this equation?

X is 23×6, y is 23×6, θ is 6×6

X is 23×5, y is 23×1, θ is 5×5

X is 23×6, y is 23×1, θ is 6×1

X is 23×5, y is 23×1, θ is 5×1

答案:C. X is 23×6, y is 23×1, θ is 6×1

X n+1 列 ,  y 1 列 , θ  n+1 行

4。

Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

Gradient descent, since it will always converge to the optimal θ.

The normal equation, since it provides an efficient way to directly find the solution.

Gradient descent, since (XTX)−1 will be very slow to compute in the normal equation.

The normal equation, since gradient descent might be unable to find the optimal θ.

答案: B. The normal equation, since it provides an efficient way to directly find the solution.

比较梯度下降与normal equation

梯度下降需要Feature Scaling;normal equation 简单方便不需Feature Scaling。

normal equation 时间复杂度较大,适用于Feature数量较少的情况。

当Feature数量<100000时  Normal Equation
当Feature数量>100000时  Gradient Descent
 

5。

Which of the following are reasons for using feature scaling?

It speeds up solving for θ using the normal equation.

It prevents the matrix XTX (used in the normal equation) from being non-invertable (singular/degenerate).

It speeds up gradient descent by making it require fewer iterations to get to a good solution.

It is necessary to prevent gradient descent from getting stuck in local optima.

答案 :C. It speeds up gradient descent by making it require fewer iterations to get to a good solution.

上一题也考到这个点:normal equation 不需要 Feature Scaling,排除AB, 特征缩放减少迭代数量,加快梯度下降,然而不能防止梯度下降陷入局部最优。

Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables的更多相关文章

  1. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  2. Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial

    https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5  ...

  3. [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  5. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)

    ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...

  8. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

随机推荐

  1. 【OpenGL4.0】GLSL渲染语言入门与VBO、VAO使用:绘制一个三角形 【转】

    http://blog.csdn.net/xiajun07061225/article/details/7628146 以前都是用Cg的,现在改用GLSL,又要重新学,不过两种语言很多都是相通的. 下 ...

  2. Linux zip

    压缩文件: zip -r res.zip [src/] [abc.txt] 解压文件: unzip res.zip -d dir_path

  3. javascript event loop

    原文: https://blog.csdn.net/sjn0503/article/details/76087631 简单来讲,整体的js代码这个macrotask先执行,同步代码执行完后有micro ...

  4. ListView控件绑定DataSet

    DataSet数据集,数据缓存在客户端内存中,支持断开式连接.   在对DataSet做操作的时候,首先一定要修改其行的状态,然后执行SqlDataAdapter的Update方法,Update方法根 ...

  5. Angular 学习笔记——$interpolate

    <!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...

  6. 福利来了,全国路网数据,poi数据

    本人现有全国路网数据,POI数据,均为原始数据.无偏移,都已分类,如图所示.有意请联系(QQ204843224), 兴趣点包含: 餐饮.村庄.大厦.服务区.公安交警.购物.火车站.机场.加油站.交通. ...

  7. Linux组件封装(五)一个生产者消费者问题示例

    生产者消费者问题是计算机中一类重要的模型,主要描述的是:生产者往缓冲区中放入产品.消费者取走产品.生产者和消费者指的可以是线程也可以是进程. 生产者消费者问题的难点在于: 为了缓冲区数据的安全性,一次 ...

  8. Mybatis 存在多个日志时设置日志

    mybatis默认使用log4j,当有self4j这个日志jar包存在时会无法打印sql,请移除或者在工程启动时显示设置mybatis使用的日志类 log4j.logger.org.apache.ib ...

  9. 操作log.py

    # 把双数日期的日志,里面给随便写点东西# 1.获取到log目录下的所有文件os.walk()# 2.根据文件名来判断,是否是双数日期,分割字符串,取到日期# 3.12%2==0# 4.打开这个文件 ...

  10. 获取bundle文件下的资源

    NSBundle* bundle = [NSBundle bundleWithPath:[[NSBundle mainBundle].resourcePath stringByAppendingPat ...