https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables

1。

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam

(midterm exam)2

final exam

89

7921

96

72

5184

74

94

8836

87

69

4761

78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ(x)=θ0+θ1x1+θ2x2, where x1 is the midterm score and x2 is (midterm score)2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature x2(2)? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

答案: -0.37

平均值 :(7921+5184+8836+4761)/4 = 6675.5

Max-Min: 8836-4761=4075

x=(xn-平均值)/(Max-Min)

training example 2   (5184-6675.5)/4075=-0.37

2。

You run gradient descent for 15 iterations

with α=0.3 and compute J(θ) after each

iteration. You find that the value of J(θ) increases over

time. Based on this, which of the following conclusions seems

most plausible?

α=0.3 is an effective choice of learning rate.

Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

Rather than use the current value of α, it'd be more promising to try a smaller value of α (say α=0.1).

答案:B. Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).

a越大下降越快,a越小下降越慢。

3。

Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is θ=(XTX)−1XTy. For the given values of m and n, what are the dimensions of θ, X, and y in this equation?

X is 23×6, y is 23×6, θ is 6×6

X is 23×5, y is 23×1, θ is 5×5

X is 23×6, y is 23×1, θ is 6×1

X is 23×5, y is 23×1, θ is 5×1

答案:C. X is 23×6, y is 23×1, θ is 6×1

X n+1 列 ,  y 1 列 , θ  n+1 行

4。

Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

Gradient descent, since it will always converge to the optimal θ.

The normal equation, since it provides an efficient way to directly find the solution.

Gradient descent, since (XTX)−1 will be very slow to compute in the normal equation.

The normal equation, since gradient descent might be unable to find the optimal θ.

答案: B. The normal equation, since it provides an efficient way to directly find the solution.

比较梯度下降与normal equation

梯度下降需要Feature Scaling;normal equation 简单方便不需Feature Scaling。

normal equation 时间复杂度较大,适用于Feature数量较少的情况。

当Feature数量<100000时  Normal Equation
当Feature数量>100000时  Gradient Descent
 

5。

Which of the following are reasons for using feature scaling?

It speeds up solving for θ using the normal equation.

It prevents the matrix XTX (used in the normal equation) from being non-invertable (singular/degenerate).

It speeds up gradient descent by making it require fewer iterations to get to a good solution.

It is necessary to prevent gradient descent from getting stuck in local optima.

答案 :C. It speeds up gradient descent by making it require fewer iterations to get to a good solution.

上一题也考到这个点:normal equation 不需要 Feature Scaling,排除AB, 特征缩放减少迭代数量,加快梯度下降,然而不能防止梯度下降陷入局部最优。

Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables的更多相关文章

  1. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  2. Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial

    https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5  ...

  3. [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  5. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  6. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)

    ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...

  8. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

随机推荐

  1. intel 硬盘加速技术

    Intel Smart Response Technology 混合硬盘技术 Intel Rapid Storage Technology SERVER:

  2. ini配置文件在LINUX下面程序打不开?

    ini配置文件在LINUX下面程序打不开? 在WINDOWS里面编辑的INI配置文件保存时默认是ANSI字符编码,LINUX可能不识别,导致LINUX程序不能打开INI配置文件,成功读取里面的参数. ...

  3. MVC中自定义ViewPage和WebViewPage

    ViewPage和WebViewPage的作用就是将Controller中数据返回给页面,一个是针对aspx一个相对cshtml的.代码如下: public abstract class WebVie ...

  4. hdu1021(C++)

    打表找规律,发现是n%4==2就是yes,否则是no #include<iostream>using namespace std;int main(){ int n; while (cin ...

  5. squid 三种代理实验

    squid 软件既可以做代理,也可以做实现缓存加速,大大降低服务器的I/O.. 1.其中squid代理分为三种,正向代理.透明代理.反向代理. (1)squid正向代理和squid透明代理都位客户端: ...

  6. 微博(MicroBlog)

    ylbtech_Miscellaneos  Inner 新浪微博  www.weibo.com 搜狐微博 http://t.sohu.com 网易微博 http://t.163.com/session ...

  7. 最简单的基于FFmpeg的移动端样例:IOS 视频解码器

    ===================================================== 最简单的基于FFmpeg的移动端样例系列文章列表: 最简单的基于FFmpeg的移动端样例:A ...

  8. jQuery的AJax异步载入片段

    主要用到load()方法以及getScript()方法,详细以一个样例说明: 在现有html文件里载入一个拟好的片段,以及在片段载入完毕之前阻止用户进一步操作的弹出框. 首先是现有html代码.无不论 ...

  9. 【BIEE】01_下载安装BIEE(Business Intelligence)11g 11.1.1.9.0

    环境准备 安装文件 如果操作系统是64位,则下载64位版本,我安装的系统是64位的 1.下载所有安装文件 1.1 Oracle Database 11g R2 下载地址: http://www.ora ...

  10. 如何检测一个aspx页面的速度慢的原因

    最近读到一篇文章,是关于如何提高一个aspx页面的速度.这是一个常见的面试问题.该问题原文出自这个网站. 出现这个问题的原因会多种多样,我们需要一步一步的排查来定位问题真正出现在哪里. 1. 找出那一 ...