Codeforces 1047C (线性筛+因数分解)
题面
分析
1.暴力做法
首先先把每个数除以gcd(a1,a2…,an)gcd(a_1,a_2 \dots,a_n )gcd(a1,a2…,an)
可以O(namax)O(n\sqrt {a_{max}})O(namax)的时间内分解出所有数的质因数,然后统计出现次数最多的质因数,设最多出现次数为xxx,然后把其他的数去掉就可以了,答案为n−xn-xn−x
例:
n=4,a={6,9,15,30}n=4,a=\{6,9,15,30\}n=4,a={6,9,15,30}
处理后a={2,3,5,10}a=\{2,3,5,10\}a={2,3,5,10}
2=22=22=2
3=33=33=3
5=55=55=5
10=2×510=2 \times 510=2×5
我们可以看出质因数2出现了2次,3出现了1次,5出现了2次
出现次数最多的质因数为2或5,均出现了2次
故答案为4-2=2
2.优化
可以看出算法的瓶颈在质因数分解,我们考虑如何优化质因数分解算法
这是一般的质因数分解算法
set<int>S;
for(int i=2; i<=x; i++) {
while(x%i==0 &&x != i) {
n/=i;
S.push(i);
}
if(x == i) {
S.push(i)
break;
}
}
该算法的时间复杂度为O(x)O(\sqrt x)O(x)
问题在于该算法需要枚举能整除x的数,效率比较低,如果对于每个数x,我们知道能被整除x的最小质数minprime[x],算法的效率就可以提高了
那么如何求出minprime呢?
我们想到线性筛法的过程
for(int i=2; i<=n; i++) {
if(!vis[i]) {
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
其中的每个合数只会被筛一次,而prime[j]不正好是能整除i×prime[j]i\times prime[j]i×prime[j]的最小质数吗?
因此可以把线性筛改成这个样子
for(int i=2; i<=n; i++) {
if(!vis[i]) {
minprime[i]=i;
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
我们就求出了minprime,注意若p是质数,minprime[p]=p
然后可以写出分解质因数的算法
if(!vis[x]||x==1) {//如果是1或质数,直接返回
cnt[x]++;
return;
}
while(x>1) {
int t=minprime[x];
cnt[t]++;
while(x%t==0&&x!=1) {
x/=t;
}
}
因为每次循环x至少要除以2,所以时间复杂度为O(log2x)O(log_2 x)O(log2x)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 300005
#define maxv 15000005
using namespace std;
typedef long long ll;
inline int gcd(int a,int b) {
return b==0?a:gcd(b,a%b);
}
int n;
int a[maxn];
int vis[maxv];
int minprime[maxv];
int cnt[maxv];
int prime[maxv];
int k=0;
void sieve(int n) {
for(int i=2; i<=n; i++) {
if(!vis[i]) {
minprime[i]=i;
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
}
void div(int x) {
if(!vis[x]||x==1) {
cnt[x]++;
return;
}
while(x>1) {
int t=minprime[x];
cnt[t]++;
while(x%t==0&&x!=1) {
x/=t;
}
}
}
int main() {
scanf("%d",&n);
sieve(15000000);
int g=0;
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
g=gcd(g,a[i]);
}
for(int i=1; i<=n; i++) {
a[i]/=g;
}
for(int i=1; i<=n; i++) {
div(a[i]);
}
int ans=0;
for(int i=2; i<=15000000; i++) {
ians=max(ans,cnt[i]);
}
if(ans==0) printf("-1\n");
else printf("%d\n",n-ans);
}
Codeforces 1047C (线性筛+因数分解)的更多相关文章
- Codeforces 385C 线性筛素数
题意:给定一个数组,求[l,r] 区间,区间里的素数,数组中,能被这个素数整除的个数,再求和. 分析:区间很大,10^9了,找去区间内的素数是不可能的,但是,数组的数很小,而且要能整除区间内的素数,所 ...
- Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划
In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- Codeforces Round #304 (Div. 2)(CF546D) Soldier and Number Game(线性筛)
题意 给你a,b(1<=b<=a<=5000000)表示a!/b!表示的数,你每次可以对这个数除以x(x>1且x为这个数的因子)使他变成a!/b!/x, 问你最多可以操作多少次 ...
- Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE time limit per test2 seconds memory limit per test256 megabytes inputstandard inp ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子
题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
随机推荐
- python基本数据类型常用方法
python基本数据类型 1.整型 1.1 int 1.2 bit_lenght # 当前数字的二进制位数,至少用n位表示 r = age.bit_length() >>> a = ...
- nuxt.js 封装axios
1.安装axios cnpm install axios --save 2.在plugins文件夹下面创建service.js import axios from 'axios' import { M ...
- linux运维、架构之路-KVM虚拟化技术
一.云计算概述 云计算:是一种资源使用和交付模式 虚拟化:一种具体的技术,用来将物理机虚拟成为多个相互独立的虚拟机.云计算不等于虚拟化,云计算是使用了虚拟化的技术做支撑 二.KVM配置使用 1.系统环 ...
- 阿里云视频云正式支持AV1编码格式 为视频编码服务降本提效
今天我们要说的 AV1 可不是我们平时说的 .AVI 文件格式,它是由AOM(Alliance for Open Media,开放媒体联盟)制定的一个开源.免版权费的视频编码格式,可以解决H.265昂 ...
- 手把手搭建K3cloud插件开发环境
最近几天在配置K3cloud开发环境,发现不论是产品论坛还是百度出来的结果,都不够满意,很多大咖给提供的环境搭建手册都是那个云山雾罩的PPT 也就是这个open.kingdee.com/K3Cloud ...
- minilzo使用流程
/* testmini.c -- very simple test program for the miniLZO library This file is part of the LZO real- ...
- kohana附件上传
try { $upload = Uploader::factory('Picture', $_FILES['Filedata'])->execute();}catch (Exception $e ...
- Dmango cxrf 自定义分页 缓存 session 序列化 信号量 知识点
参考https://www.cnblogs.com/wupeiqi/articles/5246483.html
- Beauty Values
Beauty Values 题意:给$n$个数, 定义它的Beauty Values为所有连续子区间的(区间长度*区间内不同数字的数目)求和 求Beauty Values A[i]数组表示数字i最近一 ...
- 创建maven web项目时,没有web.xml文件
1.问题:创建maven项目时,选择的是创建web-app项目,但是结果配置之后,却没有web.xml文件. 2.解决办法: ------------------------------------- ...