Codeforces 1047C (线性筛+因数分解)
题面
分析
1.暴力做法
首先先把每个数除以gcd(a1,a2…,an)gcd(a_1,a_2 \dots,a_n )gcd(a1,a2…,an)
可以O(namax)O(n\sqrt {a_{max}})O(namax)的时间内分解出所有数的质因数,然后统计出现次数最多的质因数,设最多出现次数为xxx,然后把其他的数去掉就可以了,答案为n−xn-xn−x
例:
n=4,a={6,9,15,30}n=4,a=\{6,9,15,30\}n=4,a={6,9,15,30}
处理后a={2,3,5,10}a=\{2,3,5,10\}a={2,3,5,10}
2=22=22=2
3=33=33=3
5=55=55=5
10=2×510=2 \times 510=2×5
我们可以看出质因数2出现了2次,3出现了1次,5出现了2次
出现次数最多的质因数为2或5,均出现了2次
故答案为4-2=2
2.优化
可以看出算法的瓶颈在质因数分解,我们考虑如何优化质因数分解算法
这是一般的质因数分解算法
set<int>S;
for(int i=2; i<=x; i++) {
while(x%i==0 &&x != i) {
n/=i;
S.push(i);
}
if(x == i) {
S.push(i)
break;
}
}
该算法的时间复杂度为O(x)O(\sqrt x)O(x)
问题在于该算法需要枚举能整除x的数,效率比较低,如果对于每个数x,我们知道能被整除x的最小质数minprime[x],算法的效率就可以提高了
那么如何求出minprime呢?
我们想到线性筛法的过程
for(int i=2; i<=n; i++) {
if(!vis[i]) {
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
其中的每个合数只会被筛一次,而prime[j]不正好是能整除i×prime[j]i\times prime[j]i×prime[j]的最小质数吗?
因此可以把线性筛改成这个样子
for(int i=2; i<=n; i++) {
if(!vis[i]) {
minprime[i]=i;
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
我们就求出了minprime,注意若p是质数,minprime[p]=p
然后可以写出分解质因数的算法
if(!vis[x]||x==1) {//如果是1或质数,直接返回
cnt[x]++;
return;
}
while(x>1) {
int t=minprime[x];
cnt[t]++;
while(x%t==0&&x!=1) {
x/=t;
}
}
因为每次循环x至少要除以2,所以时间复杂度为O(log2x)O(log_2 x)O(log2x)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 300005
#define maxv 15000005
using namespace std;
typedef long long ll;
inline int gcd(int a,int b) {
return b==0?a:gcd(b,a%b);
}
int n;
int a[maxn];
int vis[maxv];
int minprime[maxv];
int cnt[maxv];
int prime[maxv];
int k=0;
void sieve(int n) {
for(int i=2; i<=n; i++) {
if(!vis[i]) {
minprime[i]=i;
prime[++k]=i;
}
for(ll j=1; j<=k&&(ll)i*prime[j]<=n; j++) {
minprime[(ll)i*prime[j]]=prime[j];
vis[(ll)i*prime[j]]=1;
if(!(i%prime[j])) break;
}
}
}
void div(int x) {
if(!vis[x]||x==1) {
cnt[x]++;
return;
}
while(x>1) {
int t=minprime[x];
cnt[t]++;
while(x%t==0&&x!=1) {
x/=t;
}
}
}
int main() {
scanf("%d",&n);
sieve(15000000);
int g=0;
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
g=gcd(g,a[i]);
}
for(int i=1; i<=n; i++) {
a[i]/=g;
}
for(int i=1; i<=n; i++) {
div(a[i]);
}
int ans=0;
for(int i=2; i<=15000000; i++) {
ians=max(ans,cnt[i]);
}
if(ans==0) printf("-1\n");
else printf("%d\n",n-ans);
}
Codeforces 1047C (线性筛+因数分解)的更多相关文章
- Codeforces 385C 线性筛素数
题意:给定一个数组,求[l,r] 区间,区间里的素数,数组中,能被这个素数整除的个数,再求和. 分析:区间很大,10^9了,找去区间内的素数是不可能的,但是,数组的数很小,而且要能整除区间内的素数,所 ...
- Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划
In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- Codeforces Round #304 (Div. 2)(CF546D) Soldier and Number Game(线性筛)
题意 给你a,b(1<=b<=a<=5000000)表示a!/b!表示的数,你每次可以对这个数除以x(x>1且x为这个数的因子)使他变成a!/b!/x, 问你最多可以操作多少次 ...
- Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE time limit per test2 seconds memory limit per test256 megabytes inputstandard inp ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子
题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
随机推荐
- vscode-函数注释插件-正则插件
1.安装插件KoroFileHeader(函数标准注释) 2.设置 在vscode左下角点击设置按钮,选择“设置”,然后输入“fileheader”, 文件头部注释:Fileheader:custom ...
- 基于http方式搭建YUM源服务器
基于http方式搭建YUM源服务器 (2012-09-21 11:59:14) 转载▼ 标签: yum linux lnmp lamp http 分类: Linux 为了方便公司80多台Linux服务 ...
- 封装插件并发布到npm的历程
1.封装插件 2.使用webpack打包的时候发生了很多问题 3.过程很反复 4.但最终还是发布成功了
- echart-如何将x轴和y轴的原点进行重合???
设计稿突然让x轴 和y轴重合,我们可以设置图中的这个属性. 不知道还有没有别的设置属性,欢迎评论指出谢谢
- 数组对象去重 reduce()
let log = console.log.bind(console); let person = [ {id: 0, name: "小明"}, {id: 1, name: &qu ...
- 向上取整&向下取整
使用floor函数. floor(x)返回的是小于或等于x的最大整数.eg. floor(1.5) = 1 floor(-2.5) = -3 使用ceil函数. ceil(x)返回的是大于x ...
- Python_019(六星级别之反射方法)
1.反射 1)神赐给你的内置函数 : a: getattr(命名空间,'函数名') == 命名空间.属性名; 这里的命名空间指的是对象或者类; b: getattr四个应用场景: 1)类名.名字 &l ...
- linux ubantu php composer安装
root@iZwz93telmwbh624e5zetqZ:~# php -v PHP 5.6.40-14+ubuntu16.04.1+deb.sury.org+1 (cli) Copyright (c ...
- React-Native 之 GD (八)GET 网络请求封装
1.到这里,相信各位对 React-Native 有所熟悉了吧,从现在开始我们要慢慢往实际的方向走,这边就先从网络请求这部分开始,在正式开发中,网络请求一般都单独作为一部分,我们在需要使用的地方只需要 ...
- mysql-c++连接
1.mysql-c++连接MySQL :: Download Connector/C++ https://dev.mysql.com/downloads/connector/cpp/ 1-1VS201 ...