一、什么是K近邻算法

定义:

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:

KNN算法最早是由Cover和Hart提出的一种分类算法.

计算距离公式:

两个样本的距离可以通过如下公式计算,又叫欧式距离。
比如说,a(a1,a2,a3),b(b1,b2,b3)

 
欧式距离

二、K近邻算法的实现

sk-learn近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

近邻算法实例

案例背景:(kaggle地址:https://www.kaggle.com/c/facebook-v-predicting-check-ins/overview

 
预测入住

数据下载地址:train.csv

数据格式:

            row_id       x       y  accuracy    time    place_id
0 0 0.7941 9.0809 54 470702 8523065625
1 1 5.9567 4.7968 13 186555 1757726713
2 2 8.3078 7.0407 74 322648 1137537235
3 3 7.3665 2.5165 65 704587 6567393236
4 4 4.0961 1.1307 31 472130 7440663949
... ... ... ... ... ... ...
29118016 29118016 6.5133 1.1435 67 399740 8671361106
29118017 29118017 5.9186 4.4134 67 125480 9077887898
29118018 29118018 2.9993 6.3680 67 737758 2838334300
29118019 29118019 4.0637 8.0061 70 764975 1007355847
29118020 29118020 7.4523 2.0871 17 102842 7028698129 [29118021 rows x 6 columns]

实现思路:
1、数据集的处理(缩小数据集范围,处理日期数据,增加分割的日期数据,删除没用的日期数据,将签到位置少于n个用户的删除)
2、分割数据集
3、对数据集进行标准化
4、estimator流程进行分类预测

具体代码如下:

import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier # 读取数据
data = pd.read_csv("./data/FBlocation/train.csv")
# 处理数据
# 1、缩小数据,查询数据集范围
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
# 处理时间的数据
time_value = pd.to_datetime(data['time'], unit='s')
# 把日期格式转换成 字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 把时间戳特征删除
data = data.drop(['time'], axis=1)
# 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)] # 取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
y_predict = knn.predict(x_test)
print("预测的目标签到位置为:", y_predict)
print("预测的准确率:", knn.score(x_test, y_test))

运行结果:

预测的目标签到位置为: [8258328058 2355236719 6683426742 ... 5606572086 4932578245 9237487147]
预测的准确率: 0.3959810874704492

思考问题

1、k值取多大?有什么影响?
2、性能问题?

三、K近邻算法总结

K近邻算法优缺点

优点
简单,易于理解,易于实现,无需估计参数,无需训练

缺点

  • 懒惰算法,对测试样本分类时的计算量大,内存开销大
  • 必须指定K值,K值选择不当则分类精度不能保证

使用场景

小数据场景,几千~几万样本,具体场景具体业务去测试

四、分类模型的评估

评估方法

estimator.score()
一般最常见使用的是准确率,即预测结果正确的百分比

混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

 
混淆矩阵

精确率(Precision):预测结果为正例样本中真实为正例的比例(查得准)

 
精确率(Precision)

召回率(Recall):真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)

 
召回率(Recall)

其他分类标准,F1-score,反映了模型的稳健型

 
F1-score

分类模型评估API

评估API :

sklearn.metrics.classification_report

用法:

sklearn.metrics.classification_report(y_true, y_pred, target_names=None)

y_true:真实目标值

y_pred:估计器预测目标值

target_names:目标类别名称

return:每个类别精确率与召回率

python 机器学习(二)分类算法-k近邻算法的更多相关文章

  1. 第4章 最基础的分类算法-k近邻算法

    思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...

  2. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  3. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  4. 分类算法----k近邻算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  5. 机器学习(1)——K近邻算法

    KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...

  6. SIGAI机器学习第七集 k近邻算法

    讲授K近邻思想,kNN的预测算法,距离函数,距离度量学习,kNN算法的实际应用. KNN是有监督机器学习算法,K-means是一个聚类算法,都依赖于距离函数.没有训练过程,只有预测过程. 大纲: k近 ...

  7. 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

    k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...

  8. 【学习笔记】分类算法-k近邻算法

    k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按 ...

  9. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

随机推荐

  1. java stream中Collectors的用法

    目录 简介 Collectors.toList() Collectors.toSet() Collectors.toCollection() Collectors.toMap() Collectors ...

  2. 使用Spring Boot搭建你的第一个应用程序

    文章目录 依赖配置 main程序配置 MVC配置 安全配置 存储 Web 页面和Controller 异常处理 测试 结论 Spring Boot是Spring平台的约定式的应用框架,使用Spring ...

  3. Springboot以Jetty为容器实现http重定向到https

    1 简介 之前讲解的Springboot整合https用的是tomcat作为容器,tomcat也是一个流行多年的老牌Java容器了.但针对不同的场景,还是会有不同的选择,如Jetty.Jetty是架构 ...

  4. PCA主成分分析(上)

    PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...

  5. Neditor 2.1.16 发布,修复缩放图片问题

    开发四年只会写业务代码,分布式高并发都不会还做程序员?   BUG 修复 修复缩放图片时,鼠标mouseUp后图片还是在缩放 by @ShinyHwong Demo:  https://demo.ne ...

  6. composer+psr-4实现自动加载

    自动加载 对于库的自动加载信息,Composer 生成了一个 vendor/autoload.php 文件.你可以简单的引入这个文件,你会得到一个免费的自动加载支持. require 'vendor/ ...

  7. HDU 1159.Common Subsequence【动态规划DP】

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  8. 图论--最短路--SPFA模板(能过题,真没错的模板)

    [ACM常用模板合集] #include<iostream> #include<queue> #include<algorithm> #include<set ...

  9. 如何使用badboy录制一个脚本并成功的导入jmeter中?

    前言: 虽然,很多人已经不适用这种方式进行录制脚本了,因为不好维护.但是,还是有一些朋友在刚开始学习的过程中使用badboy. 可能有人会好奇了,人家五一都出去玩了,你在家学习吗?正巧前一阵有粉丝留言 ...

  10. bzoj 4152[AMPPZ2014]The Captain

    bzoj 4152[AMPPZ2014]The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. ...