【[SDOI2010]粟粟的书架】
第一问的做法好像不太一样
首先第二问非常简单,直接在主席树上二分就好了,单次查询的复杂度\(O(logn)\)
第一问并没有想到有二分这种神仙操作,依旧用的是主席树
我们可以对矩阵建出主席树,也就是像二维前缀和那样的主席树
但是众所周知我们写二维前缀和的时候是这么写的
pre[x][y]+=pre[x-1][y]+pre[x][y-1]-pre[x-1][y-1]
我们发现这个样子我们根本没有办法优秀的建出主席树,因为这个样子还需要容斥
我们可以按照高维前缀和的思路来处理
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) c[i][j]+=c[i][j-1];
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) c[i][j]+=c[i-1][j];
也就是我们可以直接按照上面的方式来处理,所一我们每次需要的只有像一个主席树里添加一个点和把两个主席树合并的操作了
添加一个点是常规操作,合并两个主席树自然是需要线段树合并了
不过这里启发式合并好像更能保证复杂度的样子
单次查询像第二问一样就可以了,就是拎出四棵主席树来差分就好了
尽管现在预处理变得有些慢,但是现在单次查询的复杂度还是非常优秀的\(O(log(nm))=O(logn+logm)\)
这个题值域范围非常小,于是可以直接用二维前缀和进行二分,好像也是非常优秀的\(O(log(\text{值域范围}))\)
于是这个方法被吊打了
还是放上代码吧
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define re register
#define maxn 500005
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int n,m,Q;
namespace solve1
{
int rt[201][201];
int a[201][201],b[201*201],c[201][201];
int l[201*201*801],r[201*201*801],d[201*201*801],sum[201*201*801];
int sz,cnt;
inline int find(int x)
{
int l=1,r=sz;
while(l<=r)
{
int mid=l+r>>1;
if(b[mid]==x) return mid;
if(b[mid]<x) l=mid+1;
else r=mid-1;
}
return 0;
}
int change(int pre,int pos,int val,int x,int y)
{
int root=++cnt;
d[root]=d[pre]+1,sum[root]=sum[pre]+val;
if(x==y) return root;
l[root]=l[pre],r[root]=r[pre];
int mid=x+y>>1;
if(pos<=mid) l[root]=change(l[pre],pos,val,x,mid);
else r[root]=change(r[pre],pos,val,mid+1,y);
return root;
}
int merge(int a,int b,int x,int y)
{
if(!a) return b;if(!b) return a;
int root=++cnt;
if(x==y)
{
sum[root]=sum[a]+sum[b];
d[root]=d[a]+d[b];
return root;
}
int mid=x+y>>1;
l[root]=merge(l[a],l[b],x,mid),r[root]=merge(r[a],r[b],mid+1,y);
d[root]=d[l[root]]+d[r[root]],sum[root]=sum[l[root]]+sum[r[root]];
return root;
}
int query(int p1,int p2,int p3,int p4,int x,int y,int k)
{
if(x==y)
{
int t=-b[x];
if(k%t==0) return k/t;
return k/t+1;
}
int now=sum[l[p1]]+sum[l[p2]]-sum[l[p3]]-sum[l[p4]];
int mid=x+y>>1;
if(now<k) return query(r[p1],r[p2],r[p3],r[p4],mid+1,y,k-now)+d[l[p1]]+d[l[p2]]-d[l[p3]]-d[l[p4]];
return query(l[p1],l[p2],l[p3],l[p4],x,mid,k);
}
inline void solve()
{
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) a[i][j]=c[i][j]=read(),a[i][j]=-1*a[i][j],b[++sz]=a[i][j];
std::sort(b+1,b+sz+1);
sz=std::unique(b+1,b+sz+1)-b-1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) a[i][j]=find(a[i][j]);
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) rt[i][j]=change(rt[i][j-1],a[i][j],c[i][j],1,sz);
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) rt[i][j]=merge(rt[i-1][j],rt[i][j],1,sz);
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) c[i][j]+=c[i][j-1];
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) c[i][j]+=c[i-1][j];
int sx,sy,dx,dy,K;
while(Q--)
{
sx=read(),sy=read(),dx=read(),dy=read(),K=read();
if(c[dx][dy]+c[sx-1][sy-1]-c[dx][sy-1]-c[sx-1][dy]<K) puts("Poor QLW");
else printf("%d\n",query(rt[dx][dy],rt[sx-1][sy-1],rt[dx][sy-1],rt[sx-1][dy],1,sz,K));
}
}
}
namespace solve2
{
int rt[maxn];
int l[maxn*40],r[maxn*40],d[maxn*40],sum[maxn*40];
int a[maxn],b[maxn],c[maxn];
int sz,cnt;
inline int find(int x)
{
int l=1,r=sz;
while(l<=r)
{
int mid=l+r>>1;
if(b[mid]==x) return mid;
if(b[mid]<x) l=mid+1;
else r=mid-1;
}
return 0;
}
int change(int pre,int pos,int val,int x,int y)
{
int root=++cnt;
d[root]=d[pre]+1,sum[root]=sum[pre]+val;
if(x==y) return root;
l[root]=l[pre],r[root]=r[pre];
int mid=x+y>>1;
if(pos<=mid) l[root]=change(l[pre],pos,val,x,mid);
else r[root]=change(r[pre],pos,val,mid+1,y);
return root;
}
int query(int p1,int p2,int x,int y,int k)
{
if(x==y)
{
int t=-b[x];
if(k%t==0) return k/t;
return k/t+1;
}
int now=sum[l[p1]]-sum[l[p2]];
int mid=x+y>>1;
if(now<k) return query(r[p1],r[p2],mid+1,y,k-now)+d[l[p1]]-d[l[p2]];
return query(l[p1],l[p2],x,mid,k);
}
inline void solve()
{
std::swap(n,m);
for(re int i=1;i<=n;i++) a[i]=-1*read(),b[++sz]=a[i],c[i]=-1*a[i];
std::sort(b+1,b+sz+1);
sz=std::unique(b+1,b+sz+1)-b-1;
for(re int i=1;i<=n;i++) a[i]=find(a[i]);
for(re int i=1;i<=n;i++) rt[i]=change(rt[i-1],a[i],c[i],1,sz);
for(re int i=1;i<=n;i++) c[i]+=c[i-1];
int o,x,y,K;
while(Q--)
{
o=read(),x=read(),o=read(),y=read(),K=read();
if(c[y]-c[x-1]<K) puts("Poor QLW");
else printf("%d\n",query(rt[y],rt[x-1],1,sz,K));
}
}
}
int main()
{
n=read(),m=read(),Q=read();
if(n<=200&m<=200) solve1::solve();
else solve2::solve();
return 0;
}
【[SDOI2010]粟粟的书架】的更多相关文章
- bzoj1926[Sdoi2010]粟粟的书架 二分 主席树
1926: [Sdoi2010]粟粟的书架 Time Limit: 30 Sec Memory Limit: 552 MBSubmit: 1064 Solved: 421[Submit][Stat ...
- bzoj 1926: [Sdoi2010]粟粟的书架 (主席树+二分)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1926 题面; 1926: [Sdoi2010]粟粟的书架 Time Limit: 30 Se ...
- [bzoj1926][Sdoi2010]粟粟的书架_二分_主席树
粟粟的书架 bzoj-1926 Sdoi-2010 题目大意:题目链接 注释:略 想法:分成两个题 前面的我们可以二分,直接二分出来检验即可. 对于R=1的,相当一个数列,我们在上面建立主席树. 然后 ...
- Bzoj 1926: [Sdoi2010]粟粟的书架(二分答案+乱搞+主席树)
1926: [Sdoi2010]粟粟的书架 Time Limit: 30 Sec Memory Limit: 552 MB Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱 ...
- [SDOI2010]粟粟的书架 [主席树]
[SDOI2010]粟粟的书架 考虑暴力怎么做 显然是提取出来 (x2-x1+1)*(y2-y1+1) 个数字拿出来 然后从大到小排序 然后就可以按次取数了- 然而接下来看数据范围 \(50\%\ r ...
- [BZOJ1926][SDOI2010]粟粟的书架
BZOJ Luogu Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章.粟粟家中有一个 R ...
- BZOJ1926[Sdoi2010]粟粟的书架——二分答案+主席树
题目描述 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Co rmen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位 ...
- 【刷题】BZOJ 1926 [Sdoi2010]粟粟的书架
Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章.粟粟家中有一个 R行C 列的巨型书架,书 ...
- BZOJ1926:[SDOI2010]粟粟的书架——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1926 https://www.luogu.org/problemnew/show/P2468 幸福幼 ...
- 【BZOJ1926】【SDOI2010】粟粟的书架 [主席树]
粟粟的书架 Time Limit: 30 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 幸福幼儿园 B29 班的粟粟是一 ...
随机推荐
- vue-vli3创建的项目配置热更新
vue-vli3创建的项目配置热更新 问题描述:使用vue-cli3创建的项目,修改代码之后,浏览器页面不会自动刷新,然而之前使用webpack初始化的vue项目修改代码之后浏览器会重新加载一下,因为 ...
- opencv + ffmpeg
opencv2.4.13 与 ffmepg 3.0 一起是可以安装成功的.注意编译ffmpeg时, ./configure --enable-shared 否则会报错. 另外,把以上组合换成ope ...
- 问题1-xshell远程连接不上linux主机
在其他主机上搭建linux系统,我们一般通过xshell工具去远程访问该主机,这样不仅可以方便我们的对系统或者集群进行管理也方便了我们的操作,但是在搭建好环境的时候遇到如下问题: 解决方案:1.关闭目 ...
- (转)shell命令:echo命令详解
shell命令:echo命令详解 原文:https://www.cnblogs.com/xyz0601/archive/2015/04/23/4450736.html 功能说明:显示文字. 语 法:e ...
- python读取excel表格生成sql语句 第一版
由于单位设计数据库表·,都用sql.不知道什么原因不用 powerdesign或者ermaster工具,建表很痛苦 作为程序猿当然要想办法解决,用Python写一个程序解决 需要用到 xlrd li ...
- unity监听键盘按键
放在Update里面 if (Input.anyKeyDown) { foreach (KeyCode keyCode in Enum.GetValues(typeof(KeyCode))) { if ...
- 把linux图形启动界面修改成命令行界面
由于图形界面比较耗资源,需要把启动界面修改成命令行界面,怎么修改呢? 1.vim /etc/inittab 2.把id:5:initdefault:改成 id:3:initdefault: 3.重启即 ...
- Coursera 机器学习 第9章(下) Recommender Systems 学习笔记
9.5 Predicting Movie Ratings9.5.1 Problem Formulation推荐系统.推荐系统的问题表述:电影推荐.根据用户对已看过电影的打分来推测用户对其未打分的电影将 ...
- 第七章--Java基础类库--与用户的互动
1.命令行编译和运行java程序在notepad++中集成java编译运行命令 参考博客:http://blog.sina.com.cn/s/blog_84405af50101q7fn.html2与用 ...
- mvc中在Action里调用另一个Action
今天做东西时发现一个新东西.即在一个Action调用另一Action.前提是同一个控制器.(没在一个控制里的没试过) 调用方法: public ActionResult Test1(){ //to ...