NOIP2017 宝藏

题目描述

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

新开发一条道路的代价是:

\[L*K
\]

L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋.

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

输入输出格式

输入格式:

第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。

接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1~n),和这条道路的长度 v。

输出格式:

输出共一行,一个正整数,表示最小的总代价.

输入输出样例

输入样例#1:

4 5

1 2 1

1 3 3

1 4 1

2 3 4

3 4 1

输出样例#1:

4

输入样例#2:

4 5

1 2 1

1 3 3

1 4 1

2 3 4

3 4 2

输出样例#2:

5

解题思路:

看到题目数据的第一反应,这是一道状压dp题,可是这和传统的状压不一样,思前想后也想不出状态转移方程,怎么办?

先考虑一波部分分,20%数据很好打,数据保证是一棵树,且v值相同,那就直接搜索乱搞,40%数据和20%差不多,spfa和floyed都可以过,这样40分就轻松拿到,在考场上这样的分数还算可观

因为n非常小,我们可以类比状压的思路进行搜索.看到数据范围,点很少,而边很多,那么就必定有许多重边,所以在搜索之前我们要先处理出两点之间的最短距离(用邻接矩阵),然后就是枚举每个点进行搜索,用一个数组f来表示走过的点的集合,然后在搜索中用已经到达的点去更新还没到达的点,更新方法和40分做法差不多

#include<bits/stdc++.h>
#define il inline
#define rg register
#define lol long long
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b) using namespace std; const int N=13,M=1010;
const int inf=2e9; void in(int &ans) {
ans=0; int f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0', i=getchar();
ans*=f;
} int n,m,cur,ans=inf;
int dp[1<<12],num[N],line[N][N]; void dfs(int sta) {
for(rg int u=1;u<=n;u++) {
if(!((1<<u-1)&sta)) continue;
for(rg int v=1;v<=n;v++) {
if((1<<v-1)&sta) continue;
if(line[u][v]==line[0][0]) continue;
if(dp[sta|(1<<v-1)]>dp[sta]+line[u][v]*num[u]) {
dp[sta|(1<<v-1)]=dp[sta]+line[u][v]*num[u];
int c=num[v];
num[v]=num[u]+1,dfs(sta|(1<<v-1)),num[v]=c;
}
}
}
} int main()
{
in(n),in(m); memset(line,0x3f,sizeof(line));
for(rg int i=1,a,b,c;i<=m;i++) {
in(a),in(b),in(c);
line[a][b]=line[b][a]=Min(line[a][b],c);
}
for(rg int i=1;i<=n;i++) {
memset(dp,0x3f,sizeof(dp));
memset(num,0,sizeof(num));
num[i]=1; dp[1<<i-1]=0;
dfs(1<<i-1); ans=Min(ans,dp[(1<<n)-1]);
}
printf("%d\n",ans);
return 0;
}

NOIP2017宝藏 [搜索/状压dp]的更多相关文章

  1. Luogu3959 NOIP2017宝藏(状压dp)

    按层dp,f[i][j]表示已扩展i子集的节点当前在第j层的最小代价,预处理点集间距离即可. #include<iostream> #include<cstdio> #incl ...

  2. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  3. 【NOIP2017】宝藏(状压DP)

    题意: 思路:n<=12,考虑状压DP 生成树中深度相同的点可以一次性转移完毕 设dp[sta,i]为已转移完sta状态的点,当前深度为i的最小花费 dp[sta or v,i+1]=min(d ...

  4. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

  5. 洛谷P3959 宝藏(状压dp)

    传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...

  6. 洛谷 3959 宝藏——枚举+状压dp

    题目:https://www.luogu.org/problemnew/show/P3959 原来写了个不枚举起点的状压dp. #include<iostream> #include< ...

  7. 【luoguP3959 宝藏】-状压DP

    题目描述: 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...

  8. URAL 1152. False Mirrors (记忆化搜索 状压DP)

    题目链接 题意 : 每一颗子弹破坏了三个邻近的阳台.(第N个阳台是与第1个相邻)射击后后的生存的怪物都对主角造成伤害- 如此,直到所有的怪物被消灭,求怎样射击才能受到最少伤害. 思路 : 状压,数据不 ...

  9. NOIP2017 Day2 T2 宝藏(状压DP)

    $O(n*3^n)$好难想...还有好多没见过的操作 令$f[i][j]$表示最深深度为i,点的状态为j的最小代价,每次枚举状态$S$后,计算$S$的补集里的每个点与S里的点的最小连边代价,再$O(3 ...

随机推荐

  1. python的爬虫代理设置

    现在网站大部分都是反爬虫技术,最简单就是加代理,写了一个代理小程序. # -*- coding: utf-8 -*- #__author__ = "雨轩恋i" #__date__ ...

  2. ruby $LOAD_PATH及类加载

    $LOAD_PATH $LOAD_PATH 指的是Ruby读取外部文件的一个环境变量,其实和windows的环境变量是一个概念.Ruby会在这个环境变量的路径中读取需要require的文件,如果在环境 ...

  3. ctf题目writeup(5)

    2019.2.1 今天继续bugku的隐写杂项题:题目链接:https://ctf.bugku.com/challenges 1. 这道题下载后用wireshark打开...看了好久也没看出个所以然, ...

  4. 第三章 最简单的C程序设计——顺序程序设计

    一.数据的表现形式及其运算 1.常量和变量 在计算机高级语言中,数据有两种表现形式:常量和变量. 1.1.常量 在程序运行过程中,其值不能被改变的量称为常量.如:5,6,32,0.111. 数值常量就 ...

  5. JavaScript之DOM查询

    DOM查询 - 通过具体的元素节点来查询 - 元素.getElementsByTagName() - 通过标签名查询当前元素的指定后代元素,返回数组 - 元素.childNodes - 获取当前元素的 ...

  6. SPLIT(文字列の分割)

    概要 SPLIT命令は特定の文字で値を分割する命令だ.タブ区切りや.カンマ区切り等のファイルからデータを取得し値を各項目に振り分けたい時に使用する事が多いだろう.また.XMLファイル等を使用してインタ ...

  7. 20145202马超 2016-2017-2 《Java程序设计》第四周学习总结

    20145202马超 2016-2017-2 <Java程序设计>第四周学习总结 教材学习内容总结 继承:打破了封装性 extends 1.提高了代码的复用性. 2.让类与类之间产生了关系 ...

  8. 【python3.X】Scrapy学习途径参考

    如何爬取属性在不同页面的itemhttp://scrapy-chs.readthedocs.io/zh_CN/0.24/topics/request-response.html#topics-requ ...

  9. Python3全栈学习目录

    http://www.cnblogs.com/wupeiqi/articles/4938499.html 文辉整理: http://blog.51cto.com/9272317/1869914

  10. 如何在Centos7下升级Apache至最新版本

    Apache是使用最广泛的应用部署软件.并且它也是所有服务器的必要组成部分.安装最新版本的apache意味着拥有更多最新的功能和修复了已知的BUG. 介绍 在这篇教程里面,我将会介绍在Centos7下 ...