题目描述

n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈。问最终栈中元素个数的期望是多少。

输入

一行一个正整数 n 。

输出

一行一个实数,表示期望剩下的人数,四舍五入保留三位小数。

样例输入

10

样例输出

4.168


题解

概率期望dp

显然任何时刻栈中的元素自底至顶一定是若干个0+若干个1。

但是如果设状态$p[i][j][k]$表示前$i$次操作,栈中$j$个0,$k$个1的概率,复杂度是$O(n^3)$的,显然会TLE。

注意到$0$的个数对状态转移是没有影响的,而期望在任何时刻都具有可加性,因此可以设$f[i][j]$表示前$i$次操作,栈中$j$个1的期望元素个数。

那么直接考虑新加入一个是0还是1,看一下长度是增加还是减少即可。

这里有一个问题:每次增加或减少的长度是多少?由于我们设的是总情况的期望,而期望等于 概率*权值 ,这种情况的权值为1,因此期望值就是这种情况的概率。

所以还需要维护一个$p[i][j]$表示前$i$次操作,栈中$j$个1的概率。每次使用概率转移期望即可。

时间复杂度$O(n^2)$

#include <cstdio>
#define N 2010
double p[N][N] , f[N][N];
int main()
{
int n , i , j;
double ans = 0;
scanf("%d" , &n) , p[0][0] = 1;
for(i = 0 ; i < n ; i ++ )
{
p[i + 1][1] += p[i][0] / 2 , f[i + 1][1] += (f[i][0] + p[i][0]) / 2;
p[i + 1][0] += p[i][0] / 2 , f[i + 1][0] += (f[i][0] + p[i][0]) / 2;
for(j = 1 ; j < n ; j ++ )
{
p[i + 1][j + 1] += p[i][j] / 2 , f[i + 1][j + 1] += (f[i][j] + p[i][j]) / 2;
p[i + 1][j - 1] += p[i][j] / 2 , f[i + 1][j - 1] += (f[i][j] - p[i][j]) / 2;
}
}
for(i = 0 ; i <= n ; i ++ ) ans += f[n][i];
printf("%.3lf\n" , ans);
return 0;
}

【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp的更多相关文章

  1. LibreOJ #6191. 「美团 CodeM 复赛」配对游戏

    二次联通门 : LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 /* LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 概率dp */ #include <cs ...

  2. 【loj6191】「美团 CodeM 复赛」配对游戏

    题目 显然期望dp. 简单想法: f[i][j]表示前i个人中向右看并且没有被消除的人数的概率 如果第i+1个人是向右,$f[i+1][j+1]=f[i][j]/2$ 如果第i+1个人是向左,$f[i ...

  3. loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp

    题意:有一个栈,随机插入 $n$ 次 $0$/$1$ 如果栈顶是 $1$,然后插入 $0$,则将这两个元素都弹出,否则,插入栈顶. 求:$n$ 次操作后栈中期望的元素个数. 我们发现,按照上述弹栈方式 ...

  4. LOJ #6192. 「美团 CodeM 复赛」城市网络 (树上倍增)

    #6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB 时间限制:500 ms 标准输入输出   题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接 ...

  5. LibreOJ #6192. 「美团 CodeM 复赛」城市网络

    #6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: sqc 提交提交记录统计讨论测试数据   题目描 ...

  6. 「美团 CodeM 复赛」城市网络

    题目链接 题意分析 首先 \([u,v]\)在树上是一条深度递增的链 那么我们可以使用倍增找 \(x\)的祖先当中深度最大的值大于\(x\)的点 然后维护一个\(pre\) 重新建树 这样从\(x\) ...

  7. [LOJ6191][CodeM]配对游戏(概率期望DP)

    n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 首先容易想到用概率算期望,p[i][j][k]表示已加入i个数,1有j个,总长为 ...

  8. 美团 CodeM 复赛」城市网络

    美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接的连通图),首都为 11 ...

  9. [LOJ 6213]「美团 CodeM 决赛」radar

    [LOJ 6213]「美团 CodeM 决赛」radar 题意 给定 \(n\) 个横坐标 \(x_i\) , 为它们选择一个不超过 \(y_i\) 的纵坐标 \(h_i\), 产生 \(c_ih_i ...

随机推荐

  1. Java写Excel(不生成实体文件,写为流的形式)

    java 写 Excel(不生成实体文件,写为流的形式) public String exportReportExcel(String mediaCode, List<SimpleMediaRe ...

  2. php中 include 、include_once、require、require_once4个语言结构的含义和区别

    对于不同页面中的相同代码部分,可以将其分离为单个文件 ,通过include引入文件. 可以提高代码的复用率 include 和include_once都有引入文件的作用 使用的语法是 :include ...

  3. mysql 常用函数,基本使用

    1:选中排除表1 连接表2 表3 获取选中表1中部分选中表3 的部分 并且设置选中状态select t1.*,if(t2中t3id=t1.id,1,0)as checked from t1 lefet ...

  4. Leecode刷题之旅-C语言/python-101对称二叉树

    /* * @lc app=leetcode.cn id=101 lang=c * * [101] 对称二叉树 * * https://leetcode-cn.com/problems/symmetri ...

  5. 第三章 最简单的C程序设计——顺序程序设计

    一.数据的表现形式及其运算 1.常量和变量 在计算机高级语言中,数据有两种表现形式:常量和变量. 1.1.常量 在程序运行过程中,其值不能被改变的量称为常量.如:5,6,32,0.111. 数值常量就 ...

  6. hdu6370 并查集+dfs

    Werewolf Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. class实现Stack

    基于class实现一个存储string类型的Stack 头文件: //stack.h #include<vector> #include<string> class Stack ...

  8. Lucene如何实现多条件搜索?

    有两种方式可以实现, 一是:Lucene搜索API中提供了一个布尔查询器(BooleanQuery),它可以包含多个查询器,每个查询器Occur枚举控制是“and” 还是“or” BooleanQue ...

  9. 博科brocade光纤交换机alias-zone的划分-->实操案例

    一,图形化操作 光纤交换机作为SAN网络的重要组成部分,在日常应用中非常普遍,本次将以常用的博科交换机介绍基本的配置方法. 博科300实物图: 环境描述: 如上图,四台服务器通过各自的双HBA卡连接至 ...

  10. responsive grid

    http://csswizardry.com/csswizardry-grids/ http://unsemantic.com/demo-responsive http://getbootstrap. ...