Vasya went for a walk in the park. The park has n glades, numbered from 1 to n. There are m trails between the glades. The trails are numbered from 1 to m, where the i-th trail connects glades xi and yi. The numbers of the connected glades may be the same (xi = yi), which means that a trail connects a glade to itself. Also, two glades may have several non-intersecting trails between them.

Vasya is on glade 1, he wants to walk on all trails of the park exactly once, so that he can eventually return to glade 1. Unfortunately, Vasya does not know whether this walk is possible or not. Help Vasya, determine whether the walk is possible or not. If such walk is impossible, find the minimum number of trails the authorities need to add to the park in order to make the described walk possible.

Vasya can shift from one trail to another one only on glades. He can move on the trails in both directions. If Vasya started going on the trail that connects glades a and b, from glade a, then he must finish this trail on glade b.

Input

The first line contains two integers n and m (1 ≤ n ≤ 106; 0 ≤ m ≤ 106) — the number of glades in the park and the number of trails in the park, respectively. Next m lines specify the trails. The i-th line specifies the i-th trail as two space-separated numbers, xi, yi (1 ≤ xi, yi ≤ n) — the numbers of the glades connected by this trail.

Output

Print the single integer — the answer to the problem. If Vasya’s walk is possible without adding extra trails, print0, otherwise print the minimum number of trails the authorities need to add to the park in order to make Vasya’s walk possible.

Examples

input

3 3
1 2
2 3
3 1

output

0

input

2 5
1 1
1 2
1 2
2 2
1 2

output

1

Note

In the first test case the described walk is possible without building extra trails. For example, let’s first go on the first trail, then on the second one, and finally on the third one.

In the second test case the described walk is impossible without adding extra trails. To make the walk possible, it is enough to add one trail, for example, between glades number one and two.

Solution

先跑dfs求出每个联通块的奇度点个数 然后从1开始 如果一个块不是一个点 就和当前的合并 最后合并成大联通块,大联通块的答案为奇数度点个数/2.

Code

#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
typedef long long LL;
const int maxn = 1000005;
inline int getint() {
int r = 0; bool z = true; char c = getchar();
for (; '0' > c || c > '9'; c = getchar()) if (c == '-') z = false;
for (; '0' <= c && c <= '9'; c = getchar()) r = r * 10 - '0' + c;
return z ? r : (-r);
}
struct edge_type {int to, next; } edge[maxn<<1];
int cnte, h[maxn], cnt[maxn], du[maxn], x, y, tot, n, m, ans;
bool vis[maxn], ava[maxn];
void ins(int x, int y) {
edge[++cnte].to = y;
edge[cnte].next = h[x];
h[x] = cnte;
}
void dfs(int now) {
vis[now] = true;
if (du[now] & 1) ++cnt[tot];
for (int i = h[now]; i; i = edge[i].next)
if (!vis[edge[i].to])
dfs(edge[i].to);
}
int combine(int a, int b) {
++ans;
if (a == 0 && b == 0) return 2;
if (a == 0 || b == 0) return a + b;
return a + b - 2;
}
int main() {
n = getint(); m = getint();
for (int i = 0; i < m; ++i) {
x = getint();
y = getint();
ins(x, y);
ins(y, x);
++du[x];
++du[y];
}
for (int i = 1; i <= n; ++i)
if (!vis[i]) {
++tot;
if (du[i] == 0) {vis[i]=true;ava[tot]=false;}
else {dfs(i);ava[tot]=true;}
}
int nowdu = cnt[1];
for (int i = 2; i <= tot; ++i)
if (ava[i])
nowdu = combine(nowdu, cnt[i]);
ans += nowdu / 2;
printf("%d\n", ans);
return 0;
}

 

Codeforces 209 C. Trails and Glades的更多相关文章

  1. CodeForces 209C Trails and Glades

    C. Trails and Glades time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces.209C.Trails and Glades(构造 欧拉回路)

    题目链接 \(Description\) 给定一张\(n\)个点\(m\)条边的无向图,允许有自环重边.求最少加多少条边后,其存在从\(1\)出发最后回到\(1\)的欧拉回路. 注意,欧拉回路是指要经 ...

  3. CF209C Trails and Glades

    题目链接 题意 有一个\(n\)个点\(m\)条边的无向图(可能有重边和自环)(不一定联通).问最少添加多少条边,使得可以从\(1\)号点出发,沿着每条边走一遍之后回到\(1\)号点. 思路 其实就是 ...

  4. CF209C Trails and Glades(欧拉路)

    题意 最少添加多少条边,使无向图有欧拉回路. n,m≤106 题解 求出每个点的度数 奇度数点需要连一条新边 仅有偶度数点的连通块需要连两条新边 答案为上面统计的新边数 / 2 注意:此题默认以1为起 ...

  5. Codeforces Round #209 (Div. 2) B. Permutation

    解题思路: 如果序列a是单调递增的,则序列为1,2,..... 2n,则将给出的式子化简得Σ(a2i - a2i-1) = n 如果序列a是单调递减的,则序列为2n,.........2, 1,则将给 ...

  6. Codeforces Round #209 (Div. 2) A. Table

    #include <iostream> #include <vector> using namespace std; int main(){ int n,m; cin > ...

  7. Codeforces Round #209 (Div. 2)C

    刷了一页的WA  ..终于发现了 哪里错了 快速幂模板里一个变量t居然开得long  ... 虽然代码写的丑了点 但是是对的 那个该死的long 啊.. #include <iostream&g ...

  8. Codeforces Round #209 (Div. 2)

    A: 要么是两次要么4次,判断是否在边界: #include<cstdio> using namespace std; int main() { int n,m,x; ; scanf(&q ...

  9. Codeforces Round #209 (Div. 2)A贪心 B思路 C思路+快速幂

    A. Table time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

随机推荐

  1. WebStrom快捷键

    WebStorm 是 JetBrains 推出的一款商业的 JavaScript 开发工具 任何一个编辑器都需要保存(ctrl + s),这是所有win平台上编辑类软件的特点,但是webstorm编辑 ...

  2. VBA之文件筛选

    在工作中,经常会碰到从一堆腐朽的source中按照一个列表去筛选出来现在还要用的source文件. 这个如果用vba来实现的话,会节省大量的时间,而且不会出错. 前提说明: 将想要复制的文件名列表放在 ...

  3. python——连接MySQL数据库

    都是照着说明文档来的,主要是为了以后忘记了能快一点想起来. 1. 连接 安装MySQL的时候,自动按照了Python的模块,如果没有的话,也可以在官网下载. 看什么都不如看代码来得快: import ...

  4. 【GoLang】golang 中 defer 参数的蹊跷

    参考资料: http://studygolang.com/articles/7994--Defer函数调用参数的求值 golang的闭包和普通函数调用区别:http://studygolang.com ...

  5. Python之Web前端Dom, jQuery

    Python之Web前端: Dom   jQuery ###Dom 一. 什么是Dom? 文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它 ...

  6. 64位win7下安装SQL Server 2008(图文解说版)

    运行sql安装 单击安装-全新的sql server独立安装,如果我们准备好了故障转移群集,那么我们就可以创建故障转移群集sql 常规检查 一笑而过 选择版本,或者输入密钥自动识别版本 授权协议 支持 ...

  7. Android杂记:genymotion与eclipse报错问题

    用eclipse启动genymotion时有时候会报 The connection to adb is down, and a severe error has occured. You must r ...

  8. (转)Oracle 获取上周一到周末日期的查询sql语句

    -- Oracle 取上周一到周末的sql -- 这样取的是 在一周内第几天,是以周日为开始的 select to_char(to_date('20130906','yyyymmdd'),'d') f ...

  9. 对SIL9022/9024的配置

    这里只是记录下对SIL9022.9024配置的I2C的数据,没有具体的程序.程序可以参考数据来做.程序官网也可能有. start of decoding Write to 0x72 0xBC ? 0x ...

  10. Arch Linux 安装博通 BCM4360 驱动(Arch Linux, Ubuntu, Debian, Fedora...)

    BCM4360 在2010年9月,博通完全开源的硬件驱动[1].该驱动程序 brcm80211已被列入到自2.6.37之后的内核中.随着2.6.39发布,这些驱动程序已被重新命名为 brcmsmac和 ...