http://www.lydsy.com/JudgeOnline/problem.php?id=2875 (题目链接)

题意

  求${X_{n}}$。

Solution

  矩乘板子,这里主要讲下会爆long long的整数相乘取模,我们用double可以做到${O(1)}$。

  求${(AB)~mod~C}$。求出${D=\lfloor\frac{AB}{C}\rfloor}$,我们用long double搞。那么最后的答案就是${AB-CD}$,我们直接long long搞,可以视作是在模${2^{64}}$的意义下运算。什么鬼嘛。。。

  可以long long搞的原因应该是这样的。 ${AB}$与${CD}$不同的位数不会超过long long范围,所以更高位都是相等的,我们就直接不管好了。

细节

  竟然推错矩阵了×_×

代码

// bzoj2875
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL a,m,n,g,c,x0;
LL f[3][3],tmp[3][3],t[3][3]; LL mul(LL a,LL b) {
LL ans=a*b-(LL)((long double)a*b/m+1e-6)*m; //一定要用long double
return ans<0 ? ans+m : ans; //可能减成负数
}
void power(LL b) {
while (b) {
if (b&1) {
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) {
tmp[i][j]=0;
for (int k=1;k<=2;k++) tmp[i][j]=(tmp[i][j]+mul(f[i][k],t[k][j]))%m;
}
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) f[i][j]=tmp[i][j];
}
b>>=1;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) {
tmp[i][j]=0;
for (int k=1;k<=2;k++) tmp[i][j]=(tmp[i][j]+mul(t[i][k],t[k][j]))%m;
}
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) t[i][j]=tmp[i][j];
}
}
int main() {
scanf("%lld%lld%lld%lld%lld%lld",&m,&a,&c,&x0,&n,&g);
f[1][1]=x0;f[1][2]=1;
t[1][1]=a;t[2][1]=c;t[2][2]=1;
power(n);
printf("%lld",f[1][1]%g);
return 0;
}

  

【bzoj2875】 Noi2012—随机数生成器的更多相关文章

  1. BZOJ2875 [Noi2012]随机数生成器 【矩阵乘法 + 快速乘】

    题目 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a, ...

  2. bzoj2875: [Noi2012]随机数生成器

    矩阵乘法. x[n] = {x[0],1} * ( {a,0} ^ n ) {b,1} 写成这样谁能看懂.... noi里的大水题.我居然 #include<cstdio> #includ ...

  3. [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂

    好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...

  4. 矩阵(快速幂):COGS 963. [NOI2012] 随机数生成器

    963. [NOI2012] 随机数生成器 ★★   输入文件:randoma.in   输出文件:randoma.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 栋 ...

  5. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  6. 【BZOJ2875】随机数生成器(矩阵快速幂)

    [BZOJ2875]随机数生成器(矩阵快速幂) 题面 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me ...

  7. Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)

    2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2052 Solved: 1118 Description ...

  8. [NOI2012]随机数生成器【矩阵快速幂】

    NOI2012 随机数生成器 题目描述 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法 ...

  9. BZOJ2875 & 洛谷2044:[NOI2012]随机数生成器——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2875 https://www.luogu.org/problemnew/show/P2044 栋栋 ...

随机推荐

  1. 20155306 白皎 0day漏洞——漏洞利用原理之DEP

    20155306 白皎 0day漏洞--漏洞利用原理之DEP 一.DEP机制的保护原理 1.为什么出现DEP? 溢出攻击的根源在于现代计算机对数据和代码没有明确区分这一先天缺陷,就目前来看重新去设计计 ...

  2. Express app.listen 函数了解

    最近一直在学习如何用原生的 Node.js 来做一个网站.在写的同时也在学习 Express 源码. 一直觉得 Express 开启服务器的方法挺有趣的,就看了一下. 在 Express 运行的时候会 ...

  3. MFC CTreeCtrl运用

    CTreeCtrl运用 删除无效资源 递归的运用 自写遍历目录函数 递归遍历所有子目录 一.删除无效资源 .打开资源文件 .找到无效链接删掉 二.自写遍历目录函数 CFileFind findfile ...

  4. stl源码剖析 详细学习笔记 hashset hashmap

    //---------------------------15/03/26---------------------------- //hash_set { /* hash_set概述: 1:这是一个 ...

  5. 命令行启用IIS Express

    我们在调试WEB程序的时候可以把本地web程序挂载到本地IIS,然后访问程序,通过附加进程的方式(w3wp)来调试程序(个人非常喜欢的一种调试方式),还有一种比较传统的方式就是通过VS自带的F5来执行 ...

  6. python3 subprocess模块

    当我们在执行python程序的时候想要执行系统shell可以使用subprocess,这时可以新起一个进程来执行系统的shell命令,python3常用的有subprocess.run()和subpr ...

  7. selenium+ python自动化--断言assertpy

    前言: 在对登录验证时,不知道为何原因用unittest的断言不成功,就在网上发现这个assertpy,因此做个笔记 准备: pip install assertypy 例子: from assert ...

  8. github添加ssh连接用户

    最近打算用flask写一个自己的博客网站,打算把代码放在GitHub上,使用ssh访问.记录下GitHub配置ssh用户的流程. 1.在本地电脑或云服务器上生成ssh公钥和私钥,window下可以进入 ...

  9. 树形DP ---- Codeforces Global Round 2 F. Niyaz and Small Degrees引发的一场血案

    Aspirations:没有结果,没有成绩,acm是否有意义?它最大的意义就是让我培养快速理解和应用一个个未知知识点的能力. ————————————————————————————————————— ...

  10. 基于spring框架的apache shiro简单集成

    关于项目的安全保护,我一直想找一个简单配置就能达到目的的方法,自从接触了shiro,这个目标总算达成了,以下结合我使用shiro的经验,谈谈比较轻便地集成该功能. 首先我们先了解一下shiro是什么. ...