铭文一级:

Spark Streaming is an extension of the core Spark API that enables scalable,
high-throughput,
fault-tolerant
stream processing of live data streams.

Spark Streaming个人的定义:
将不同的数据源的数据经过Spark Streaming处理之后将结果输出到外部文件系统

特点
低延时
能从错误中高效的恢复:fault-tolerant
能够运行在成百上千的节点
能够将批处理、机器学习、图计算等子框架和Spark Streaming综合起来使用

Spark Streaming是否需要独立安装?

One stack to rule them all : 一栈式

GitHub
https://github.com/apache/spark

spark-submit的使用

使用spark-submit来提交我们的spark应用程序运行的脚本(生产)
./spark-submit --master local[2] \
--class org.apache.spark.examples.streaming.NetworkWordCount \
--name NetworkWordCount \
/home/hadoop/app/spark-2.2.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.2.0.jar hadoop000 9999

如何使用spark-shell来提交(测试)
./spark-shell --master local[2]

import org.apache.spark.streaming.{Seconds, StreamingContext}

val ssc = new StreamingContext(sc, Seconds(1))
val lines = ssc.socketTextStream("hadoop000", 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()

工作原理:粗粒度
Spark Streaming接收到实时数据流,把数据按照指定的时间段切成一片片小的数据块,
然后把小的数据块传给Spark Engine处理。

铭文二级:

Spark Streaming功能特点:可扩展、高吞吐、容错性

与Spark生态的其他环境的整合:

1、file与RDD   2、与MLib   3、RDD->SQL

有些时候要了解一下发展史,面试可能会问

比如说DataSet、DataFrame是哪个版本提出来的

词频统计实例=>

从github上(https://github.com/apache/spark/blob/master/examples/)可以看源码:

注意两个参数:hostname、port

用spark-submit方式运行(主要用于生产)

进入Spark Streaming的bin目录下:

[运行rm *.cmd删除window上才能运行的脚本使更简洁咯]

步骤一=>

启动终端二运行:nc -lk 9999

步骤二=>

终端一运行指令为:./spark-submit --master local[2] \

--class org.apache.spark.examples.streaming.NetworkWordCount \

在examples/jars里面的jar包 hadoop000 9999

复制指令去bin目录下执行

步骤三=>

去终端二输入测试数据:

a a a c c d e

在终端一可以观察到统计结果

用spark-shell方式运行(主要用于测试)

1、执行 ./spark-shell --master local[2]

2、修改官网的代码

A.删去SparkConf申明语句,因为spark-shell运行时已自动创建

B.StreamingContext的第一个参数sparkConf改为sc

C.修改socketTextStream第一第二个参数为实际情况,删除第三参数

D.添加类的导入语句

import org.apache.spark.streaming.{Seconds, StreamingContext}

3、拷贝本段代码,粘贴去终端运行,方法同spark-submit

粗粒度:按时间段切成小段

细粒度:

【慕课网实战】Spark Streaming实时流处理项目实战笔记八之铭文升级版的更多相关文章

  1. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十之铭文升级版

    铭文一级: 第八章:Spark Streaming进阶与案例实战 updateStateByKey算子需求:统计到目前为止累积出现的单词的个数(需要保持住以前的状态) java.lang.Illega ...

  2. 【慕课网实战】Spark Streaming实时流处理项目实战笔记七之铭文升级版

    铭文一级: 第五章:实战环境搭建 Spark源码编译命令:./dev/make-distribution.sh \--name 2.6.0-cdh5.7.0 \--tgz \-Pyarn -Phado ...

  3. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十四之铭文升级版

    铭文一级: 第11章 Spark Streaming整合Flume&Kafka打造通用流处理基础 streaming.conf agent1.sources=avro-sourceagent1 ...

  4. 【慕课网实战】Spark Streaming实时流处理项目实战笔记二之铭文升级版

    铭文一级: 第二章:初识实时流处理 需求:统计主站每个(指定)课程访问的客户端.地域信息分布 地域:ip转换 Spark SQL项目实战 客户端:useragent获取 Hadoop基础课程 ==&g ...

  5. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十六之铭文升级版

    铭文一级: linux crontab 网站:http://tool.lu/crontab 每一分钟执行一次的crontab表达式: */1 * * * * crontab -e */1 * * * ...

  6. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十五之铭文升级版

    铭文一级:[木有笔记] 铭文二级: 第12章 Spark Streaming项目实战 行为日志分析: 1.访问量的统计 2.网站黏性 3.推荐 Python实时产生数据 访问URL->IP信息- ...

  7. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十二之铭文升级版

    铭文一级: ======Pull方式整合 Flume Agent的编写: flume_pull_streaming.conf simple-agent.sources = netcat-sources ...

  8. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十一之铭文升级版

    铭文一级: 第8章 Spark Streaming进阶与案例实战 黑名单过滤 访问日志 ==> DStream20180808,zs20180808,ls20180808,ww ==> ( ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记九之铭文升级版

    铭文一级: 核心概念:StreamingContext def this(sparkContext: SparkContext, batchDuration: Duration) = { this(s ...

随机推荐

  1. Django中使用django_debug_toolbar

    一 概述 django_debug_toolbar 是django的第三方工具包,给django扩展了调试功能. 包括查看执行的sql语句,db查询次数,request,headers,调试概览等. ...

  2. sql backup

    create or replace procedure P_updateasbegin update security_price p set p.closing_price = (select MI ...

  3. 整理 oracle异常错误处理

    5.1 异常处理概念 5.1.1 预定义的异常处理 5.1.2 非预定义的异常处理 5.1.3 用户自定义的异常处理 5.1.4  用户定义的异常处理 5.2 异常错误传播 5.2.1 在执行部分引发 ...

  4. ListView的自定义适配器及其优化(listView序号混乱问题的处理)

    ListView是最常使用的android组件之一,关于listView的优化问题刚刚了解了一些,在这里做出总结. PS:如果想让ListView中的item根据数据内容显示item的大小,需要在it ...

  5. 解决 win 7 64 位 vs2010 调试silverlight项目无法加载,提示更新developer ,跟新报 消息 ID: 1517 已安装了 Silverlight 的 64 位版本

    出现上面的问题是我们安装的silverlight的版本和系统给的silverlight下载的版本冲突, 解决的方法是,首先卸载Silverlight runtime(也就是默认的silverlight ...

  6. Json数据处理协议与办法

    [JSON学习]     一.概述     JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文 本格式,是理想的数据交换格式.同时,J ...

  7. [SoapUI] 从Map里面不想要的键值对

    def keysToRemoveForBoss = ["RequestIdBmk", "RequestIdTest"] def extraInfoMapForB ...

  8. Permutation Sequence LT60

    The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...

  9. h5页面适配iPhone X的方法

    一.原生适配iphoneX 原生适配很简单,查看机型图:   只要用 #define KIsiPhoneX ([UIScreen mainScreen].bounds.size.height>8 ...

  10. luaFramework

    BeginStaticLibs  参考CustomSettings.cs public static List<Type> staticClassTypes = new List<T ...