Hadoop 4 MapReduce
对单词个数统计的MapReduce的案例
Mapper类:
package main.java.worldClient; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; /**
* <KEYIN,VALUEIN,KEYOUT,VALUEOUT>
* 分别对应map输入和输出的key和value对应的数据类型
* 默认map的输入,key是改行在文件中的偏移量,value是文件中一行的内容
* @author Lenovo
*
*/ public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{ /**
* 切分单词,然后输出
*/
@Override
protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//获取一行信息
String line = value.toString();
String words[] = line.split(" ");
LongWritable writable = new LongWritable(1);
for(String word:words){
//将输出写入context
//write(a,b)中a与mapper(keyin,valuein,keyout,valueout)的keyout与valueout对应
context.write(new Text(word), writable);
}
} }
Reduce类:
package main.java.worldClient; import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* <KEYIN,VALUEIN,KEYOUT,VALUEOUT>
* reduce的输入和输出的key和value
* 输入的key和value肯定和map输出的key和value一致
* @author Lenovo
*
*/
public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{ @Override
protected void reduce(Text key, Iterable<LongWritable> values,
Reducer<Text,LongWritable,Text,LongWritable>.Context context)
throws IOException, InterruptedException {
int sum = 0;
Iterator<LongWritable> iter = values.iterator();
while(iter.hasNext()){
LongWritable value = iter.next();
sum += value.get();
} context.write(key, new LongWritable(sum));
} }
Runner类:
package main.java.worldClient; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WCRunner {
public static void main(String[] args) {
Configuration conf = new Configuration();
try{
Job job = Job.getInstance(conf);
job.setJobName("wc MR");
job.setJarByClass(WCRunner.class);
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class); /*
* 如果map和reduce的输出类型一致可以不设置map的输出
*/
//map输出的key,value
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//reduce输出的key,value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); FileInputFormat.addInputPath(job, new Path(args[0]));
//输出目录必须不存在
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); }catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}
}
在windows环境下运行会报控指针错误,目前我正在查找解决方法,所以通过Xshell与Xftp将写好的java导出jar包以及程序需要的文件传到linux虚拟机内(用linux命令将输入文件导入到hadoop的目录下这样会在接下来方便写命令),在linux下运行测试。hadoop jar找到的jar包为本地jar包无法找hdfs上的jar文件(我自己的理解不知道对不对)
主要步骤:
1:bin/hadoop fs -mkdir -p /MRTest/input 在hdfs下创建目录
2:bin/hadoop fs -put ~/WCTest.txt.txt /MRTest/input 将程序需要执行的文件放到input文件夹下
3:bin/hadoop jar ~/wctest.jar main.java.worldClient.WCRunner /MRTest/input /MRTest/output 运行jar包 其中output必须时不存在的文件目录
Hadoop 4 MapReduce的更多相关文章
- Hadoop 新 MapReduce 框架 Yarn 详解
Hadoop 新 MapReduce 框架 Yarn 详解: http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/ Ap ...
- 用PHP编写Hadoop的MapReduce程序
用PHP编写Hadoop的MapReduce程序 Hadoop流 虽然Hadoop是用Java写的,但是Hadoop提供了Hadoop流,Hadoop流提供一个API, 允许用户使用任何语言编 ...
- Hadoop之MapReduce程序应用三
摘要:MapReduce程序进行数据去重. 关键词:MapReduce 数据去重 数据源:人工构造日志数据集log-file1.txt和log-file2.txt. log-file1.txt内容 ...
- 从Hadoop骨架MapReduce在海量数据处理模式(包括淘宝技术架构)
从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇.而神奇的东西常能勾 ...
- 对于Hadoop的MapReduce编程makefile
根据近期需要hadoop的MapReduce程序集成到一个大的应用C/C++书面框架.在需求make当自己主动MapReduce编译和打包的应用. 在这里,一个简单的WordCount1一个例子详细的 ...
- Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码
Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些 ...
- Hadoop基础-MapReduce的常用文件格式介绍
Hadoop基础-MapReduce的常用文件格式介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MR文件格式-SequenceFile 1>.生成SequenceF ...
- Hadoop基础-MapReduce的Join操作
Hadoop基础-MapReduce的Join操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.连接操作Map端Join(适合处理小表+大表的情况) no001 no002 ...
- Hadoop基础-MapReduce的排序
Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个 ...
- Hadoop基础-MapReduce的数据倾斜解决方案
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致 ...
随机推荐
- 【洛谷】【单调队列】P2032 扫描
[题目描述:] 有一个 1 ∗ n 的矩阵,有 n 个正整数. 现在给你一个可以盖住连续的 k 的数的木板. 一开始木板盖住了矩阵的第 1 ∼ k 个数,每次将木板向右移动一个单位,直到右端与第 n ...
- text/html & text/plain的区别
需要了解的概念 Content-Type:用于定义用户的浏览器或相关设备如何显示将要加载的数据,或者如何处理将要加载的数据 MIME:MIME类型就是设定某种扩展名的文件用一种应用程序来打开的方式类型 ...
- ethereum/EIPs-725
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-725.md eip title author discussions-to status ...
- divide_3
xiao方法 #include<stdio.h> #include<vector> #include<iostream> using namespace std; ...
- VC++定义全局变量及extern用法
基本解释:extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 也就是说extern有两 ...
- python变量的引用,浅拷贝
python的变量是对象引用 l1和l2引用的相同的对象,所以会相互影响 元组不变的是引用的物理地址,如果引用的对象是可变的,那么远祖也会发生变化 但是t1[2]的id时钟没有发生变化 2 默认是浅拷 ...
- Android Fragment(一)
一.为什么要引入Fragments? 自从Android 3.0中引入fragments 的概念,可以译为:碎片.片段.其上的是为了解决不同屏幕分辩率的动态和灵活UI设计.大屏幕如平板小屏幕如手机,平 ...
- Java java.text.ParseException: Unparseable date
用java将字符串转换成Date类型是,会出现java.text.ParseException: Unparseable date异常. 例如下面的这段代码就会出现上面的异常: public bool ...
- day77
昨日回顾: 批量插入数据: -queryset的方法:bulk_create(对象列表,数字(一次插入多少)) 分页器: from django.core.paginator import ...
- 添加mysqld、apache服务到windows服务
mysqld --install “d:\apache\bin\httpd.exe” -k install