A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input##

Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:



ID K ID[1] ID[2] ... ID[K]



where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

Output##

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.



The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

Sample Input##

2 1

01 1 02

Sample Output##

0 1



题目大意:计算树的每一层上有多少个叶子节点并按层输出

分析:使用深度有限搜索(DFS)递归遍历树上每一个节点的孩子节点,如果这个节点没有孩子节点,就逐层返回。child[i]集合记录每个节点的孩子节点,leaf[i]数组记录每一层上的叶子节点,max_h记录最大层数,层数从1开始。也可以使用广度优先搜索(BFS),不同之处是DFS使用集合,BFS使用队列,且BFS不用使用递归,只需要第一个节点入队列后判断队列非空即可。

//DFS求叶子节点
#include <iostream>
#include <vector>
using namespace std;
int leaf[100],max_h=1;
vector<int> child[100];
void DFS(int id_num,int h)
{
if(max_h<h) max_h=h;
int k=child[id_num].size();
if(k==0){
leaf[h]+=1;
return;
}
for(int i=0;i<k;i++)
{
DFS(child[id_num][i],h+1);
}
}
int main() {
int n,m;
scanf("%d %d",&n,&m);
int id_num,k,id;
for(int i=0;i<m;i++){
scanf("%d %d",&id_num,&k);
for(int j=0;j<k;j++){
scanf("%d",&id);
child[id_num].push_back(id);
}
}
DFS(1,1);
for(int i=1;i<=max_h;i++){
if(i!=1) printf(" ");
printf("%d",leaf[i]);
}
printf("\n");
return 0;
}

1004. Counting Leaves(30)—PAT 甲级的更多相关文章

  1. PAT 解题报告 1004. Counting Leaves (30)

    1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  2. PAT 1004 Counting Leaves (30分)

    1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  3. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  4. PTA 1004 Counting Leaves (30)(30 分)(dfs或者bfs)

    1004 Counting Leaves (30)(30 分) A family hierarchy is usually presented by a pedigree tree. Your job ...

  5. 1004 Counting Leaves (30分) DFS

    1004 Counting Leaves (30分)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  6. 【PAT甲级】1004 Counting Leaves (30 分)(BFS)

    题意:给出一棵树的点数N,输入M行,每行输入父亲节点An,儿子个数n,和a1,a2,...,an(儿子结点编号),从根节点层级向下依次输出当前层级叶子结点个数,用空格隔开.(0<N<100 ...

  7. PAT 1004. Counting Leaves (30)

    A family hierarchy is usually presented by a pedigree tree.  Your job is to count those family membe ...

  8. PAT A 1004. Counting Leaves (30)【vector+dfs】

    题目链接:https://www.patest.cn/contests/pat-a-practise/1004 大意:输出按层次输出每层无孩子结点的个数 思路:vector存储结点,dfs遍历 #in ...

  9. 【PAT Advanced Level】1004. Counting Leaves (30)

    利用广度优先搜索,找出每层的叶子节点的个数. #include <iostream> #include <vector> #include <queue> #inc ...

  10. PAT (Advanced Level) 1004. Counting Leaves (30)

    简单DFS. #include<iostream> #include<cstring> #include<cmath> #include<algorithm& ...

随机推荐

  1. 微服务架构之spring cloud ribbon

    现在负载均衡是通用的解决分压的技术方案,实现方式一般分为服务端或者客户端,服务端大部分是使用中间件实现,spring cloud ribbon 是一个客户端负载均衡组件.跟spring cloud e ...

  2. 四元数(Quaternion)和旋转 +欧拉角

    四元数介绍 旋转,应该是三种坐标变换--缩放.旋转和平移,中最复杂的一种了.大家应该都听过,有一种旋转的表示方法叫四元数.按照我们的习惯,我们更加熟悉的是另外两种旋转的表示方法--矩阵旋转和欧拉旋转. ...

  3. Unihan(统汉字)常用字段介绍

    0 背景 1 文件 1.1 IRG Sources 1.2 Dictionary Indices 1.3 Dictionary-like Data 1.4 Other Mappings 1.5 Rad ...

  4. 用jsp实现网站登录界面的制作,并连接数据库

    课堂测试 任务需求: 撰写一篇博客 需要网站系统开发需要掌握的技术: 本次课堂测试的源程序代码: 运行结果截图: 说明课堂测试未按时完成的原因. 列出你对这门课的希望和自己的目标,并具体列出你计划每周 ...

  5. spring boot(1)-Hello World

    spring boot简介 spring boot是由spring官方推出的一个新框架,对spring进行了高度封装,是spring未来的发展方向.spring boot功用众多,其中最主要的功能就是 ...

  6. 常规操作系统Windows系统淋雨系统Unix系统netware等系统介绍分析

    服务器操作系统有有很多,比如说:Windows.Linux.Unix和Netware......但我们经常用过仅有Windows和Linux.下面简单为大家介绍一下常见服务器操作系统. 1.Windo ...

  7. time random sys 模块

    time模块 顾名思义就是时间模块 我们在之前就用过一些时间模块 比如你想要让打印的时间延迟就time.sleep() 首先我们知道这是一个时间操作的模块 它可以分为三种模式:时间戳模式.格式化时间模 ...

  8. Asp.Net MVC源码调试

    首先下载MVC源代码,下载地址为:https://aspnetwebstack.codeplex.com/ 打开项目,卸载test文件夹下的所有项目和System.Web.WebPages.Admin ...

  9. CentOS 7 安装Rabbitmq

    第一步也是往往最重要的一步:下载安装包! Rabbitmq地址:https://github.com/rabbitmq/rabbitmq-server/releases/tag/v3.7.5 Erla ...

  10. Apache,php配置

    很多朋友想要在window下配置apache+php+mysql运行环境,其实从这么长时间的经验来看,win2003下还是用iis,如果为了学习或对apache特别熟悉的朋友可以用apache   一 ...