1004. Counting Leaves(30)—PAT 甲级
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.
Input##
Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.
Output##
For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.
The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.
Sample Input##
2 1
01 1 02
Sample Output##
0 1
题目大意:计算树的每一层上有多少个叶子节点并按层输出
分析:使用深度有限搜索(DFS)递归遍历树上每一个节点的孩子节点,如果这个节点没有孩子节点,就逐层返回。child[i]集合记录每个节点的孩子节点,leaf[i]数组记录每一层上的叶子节点,max_h记录最大层数,层数从1开始。也可以使用广度优先搜索(BFS),不同之处是DFS使用集合,BFS使用队列,且BFS不用使用递归,只需要第一个节点入队列后判断队列非空即可。
//DFS求叶子节点
#include <iostream>
#include <vector>
using namespace std;
int leaf[100],max_h=1;
vector<int> child[100];
void DFS(int id_num,int h)
{
if(max_h<h) max_h=h;
int k=child[id_num].size();
if(k==0){
leaf[h]+=1;
return;
}
for(int i=0;i<k;i++)
{
DFS(child[id_num][i],h+1);
}
}
int main() {
int n,m;
scanf("%d %d",&n,&m);
int id_num,k,id;
for(int i=0;i<m;i++){
scanf("%d %d",&id_num,&k);
for(int j=0;j<k;j++){
scanf("%d",&id);
child[id_num].push_back(id);
}
}
DFS(1,1);
for(int i=1;i<=max_h;i++){
if(i!=1) printf(" ");
printf("%d",leaf[i]);
}
printf("\n");
return 0;
}
1004. Counting Leaves(30)—PAT 甲级的更多相关文章
- PAT 解题报告 1004. Counting Leaves (30)
1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is t ...
- PAT 1004 Counting Leaves (30分)
1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...
- 1004. Counting Leaves (30)
1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is ...
- PTA 1004 Counting Leaves (30)(30 分)(dfs或者bfs)
1004 Counting Leaves (30)(30 分) A family hierarchy is usually presented by a pedigree tree. Your job ...
- 1004 Counting Leaves (30分) DFS
1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is ...
- 【PAT甲级】1004 Counting Leaves (30 分)(BFS)
题意:给出一棵树的点数N,输入M行,每行输入父亲节点An,儿子个数n,和a1,a2,...,an(儿子结点编号),从根节点层级向下依次输出当前层级叶子结点个数,用空格隔开.(0<N<100 ...
- PAT 1004. Counting Leaves (30)
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family membe ...
- PAT A 1004. Counting Leaves (30)【vector+dfs】
题目链接:https://www.patest.cn/contests/pat-a-practise/1004 大意:输出按层次输出每层无孩子结点的个数 思路:vector存储结点,dfs遍历 #in ...
- 【PAT Advanced Level】1004. Counting Leaves (30)
利用广度优先搜索,找出每层的叶子节点的个数. #include <iostream> #include <vector> #include <queue> #inc ...
- PAT (Advanced Level) 1004. Counting Leaves (30)
简单DFS. #include<iostream> #include<cstring> #include<cmath> #include<algorithm& ...
随机推荐
- Linux下的Mysql备份/恢复
数据库逻辑备份 逻辑备份:将数据库的数据以逻辑的SQL语句的方式导出 查看帮助 mysqldump --help 0.数据库开启状态 1.备份某个特定的库: mysqldump -uroot -pro ...
- 企业级NGINX的重定向rewrite
vim /usr/local/nginx/conf/nginx.conf server { listen 80; server_name www.ftl.com; rewrite ^/(.*) htt ...
- 第九次,mp3
- Linux命令--压缩解压(简化版)
Linux tar.gz.tar.bz2.zip 等解压缩.压缩命令详解(简化版) Linux 常用的压缩与解压缩命令有:tar.gzip.gunzip.bzip2.bunzip2.compress ...
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- SVN There are unfinished transactions detected
在ECLIPSE中报这个错,不能提交和更新代码和clean up 解决办法:关闭ECLIPSE,使用工具对SVN执行 clean up. 重新启动ECLIPSE,解决冲突文件,可以正常使用SVN
- 配置Ceph集群为OpenStack后端存储
配置Ceph存储为OpenStack的后端存储 1 前期配置 Ceph官网提供的配置Ceph块存储为OpenStack后端存储的文档说明链接地址:http://docs.ceph.com/docs/ ...
- 前端构建之--gulp
gulp相关插件: 1.del / gulp-clean 删除文件,用于清空文件 2.browser-sync 用于自动刷新浏览器 3.gulp-htmlmin 用于压缩html 4.gulp-cle ...
- HashMap源代码解析
HashMap原理剖析 之前有看过别人的HashMap源代码的分析,今天尝试自己来分析一波,纯属个人愚见.听一些老的程序员说过,当别人跟你说用某样技术到项目中去,而你按照别人的想法实现了的时候,你只能 ...
- web-ctf随机数安全
rand() 函数在产生随机数的时候没有调用 srand(),则产生的随机数是有规律可询的. 产生的随机数可以用下面这个公式预测 : state[i] = state[i-3] + state[i-3 ...