一.什么是kafka
kafka的目标是实现一个为处理实时数据提供一个统一、高吞吐、低延迟的平台。是分布式发布-订阅消息系统,是一个分布式的,可划分的,冗余备份的持久性的日志服务。
Kafka使用场景:
1 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
2 消息系统:解耦和生产者和消费者、缓存消息等。
3 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
4 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
5 流式处理:比如spark streaming和storm
Kafka拓扑与流程:

二.Kafka组件
1.主题(topic)
Kafka将一组消息归纳为一个主题(topic),一个主题就是对消息的一个分类。生产者将消息发送到特定的主题,消费者订阅主题或主题的某些分区进行消费。

2.消息
Kafka通信基本单位,由一个固定长度的消息头和一个可变长度的消息体构成。

3.分区与副本
Kafka可以将主题划分为多个分区(Partition),会根据分区规则选择把消息存储到哪个分区中,只要如果分区规则设置的合理,那么所有的消息将会被均匀的分布到不同的分区中,这样就实现了负载均衡和水平扩展。另外,多个订阅者可以从一个或者多个分区中同时消费数据,以支撑海量数据处理能力
Kafka的设计也是源自生活,好比是为公路运输,不同的起始点和目的地需要修不同高速公路(主题),高速公路上可以提供多条车道(分区),流量大的公路多修几条车道保证畅通,流量小的公路少修几条车道避免浪费。收费站好比消费者,车多的时候多开几个一起收费避免堵在路上,车少的时候开几个让汽车并道就好了
分区数可以大于节点数,但是副本数不能大于节点数量。创建主题是分区数量最好为代理数量的整数倍。
每分区有一个或多个副本(replica),从存储角度上分析,每个副本在逻辑上抽象为一个日志(log)对象,即分区的副本与日志对象是一一对应的,Kafka会给每个分区找一个节点当带头大哥(Leader),以及若干个节点当随从(Follower)。消息写入分区时,带头大哥除了自己复制一份外还会复制到多个随从。如果随从挂了,Kafka会再找一个随从从带头大哥那里同步历史消息。
Kafka保证一个分区内消息是有序的,不能保证跨分区消息有序性,每条消息被追加到相应的分区,是顺序写磁盘,因此效率很高。
segment对应一个文件(实现上对应2个文件,一个数据文件,一个索引文件),一个partition对应一个文件夹,一个partition里理论上可以包含任意多个segment。

4.偏移量(offset)
kafka作为一个消息队列,每次读取消息时,需要指定从哪里读取,否则就会从默认位置读取。
那么为什么不将位置偏移量储存在kafka中呢?原因是,如果在位置偏移量记录在kafka, 当kafka组件故障重启时,就无法获取位置偏移量。zookeeper作为常用组件管理工具,成为记录kafka位置偏移量推荐

从上图可以看出,每条消息存在磁盘的偏移量是其距离文件开头的绝对偏移量。比如上面第一条消息的偏移量是0;第二条消息的偏移量是第一条消息的总长度;第三条消息是其前两条消息总长度;以此类推。这种方式存储消息的偏移量很好理解,处理起来也很方便。
需要注意,消息存储到磁盘的偏移量是由 Broker 处理完成的,原因很简单,因为只有 Broker 端才知道现在 Log 的最新偏移量; Producer 端是无法获取的

5.代理(broker)
Kafka节点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
1 Broker没有副本机制,一旦broker宕机,该broker的消息将都不可用。
2 Broker不保存订阅者的状态,由订阅者自己保存。
3 无状态导致消息的删除成为难题(可能删除的消息正在被订阅),Kafka采用基于时间的SLA(服务保证),消息保存一定时间(通常7天)后会删除。
4消费订阅者可以rewind back(回卷)到任意位置重新进行消费,当订阅者故障时,可以选择最小的offset(id)进行重新读取消费消息

6.生产者(producer)
生产者负责将消息发送给代理,也就是向kafka代理发送消息的客户端。

7.消费者(comsumer)和消费组
假设我们有一个应用程序需要从-个 Kafka主题读取消息并验证这些消息,然后再把它们 保存起来。应用程序需要创建一个消费者对象,订阅主题并开始接收消息,然后验证消息 井保存结果。过了 一阵子,生产者往主题写入消息的速度超过了应用程序验证数据的速度,这个时候该怎么办?如果只使用单个消费者处理消息,应用程序会远跟不上消息生成的速度。显然,此时很有必要对消费者进行横向伸缩。就像多个生产者可以向相同的 主题 写入消息一样,我们也可以使用多个消费者从同一个主题读取消息,对消息进行分流。
Kafka 消费者从属于消费者群组。一个群组里的消费者订阅的是同一个主题,每个消费者 接收主题一部分分区的消息。

8.ISR
kafka同步机制
同步复制:只有所有的follower把数据拿过去后才commit,一致性好,可用性不高。
异步复制:只要leader拿到数据立即commit,等follower慢慢去复制,可用性高,立即返回,一致性差一些。
不是完全同步:是一种ISR机制:
1. leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护
2. 如果一个flower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除
3. 当ISR中所有Replica都向Leader发送ACK时,leader才commit
把滞后的follower移除ISR主要是避免写消息延迟。设置ISR主要是为了broker宕掉之后,重新选举partition的leader从ISR列表中选择。

kafka原理与组件的更多相关文章

  1. Kakfa揭秘 Day1 Kafka原理内幕

    Spark Streaming揭秘 Day32 Kafka原理内幕 今天开始,会有几天的时间,和大家研究下Kafka.在大数据处理体系中,kafka的重要性不亚于SparkStreaming.可以认为 ...

  2. kafka原理简介并且与RabbitMQ的选择

    kafka原理简介并且与RabbitMQ的选择 kafka原理简介,rabbitMQ介绍,大致说一下区别 Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和 ...

  3. atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7

    atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7 1. 实现原理 1 2. 大的文件上传原理::使用applet 1 3. 新的bp 2 1. 性能提升---分割小文件上传 ...

  4. kafka原理和实践(一)原理:10分钟入门

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  5. kafka原理和实践(二)spring-kafka简单实践

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  6. kafka原理和实践(六)总结升华

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  7. kafka原理和实践(三)spring-kafka生产者源码

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  8. kafka原理和实践(四)spring-kafka消费者源码

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  9. kafka原理和实践(五)spring-kafka配置详解

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

随机推荐

  1. Oracle系列十 创建和管理表

    常见的数据库对象 Oracle 数据库中的表 用户定义的表: 用户自己创建并维护的一组表 包含了用户所需的信息 如:SELECT * FROM user_tables;查看用户创建的表 数据字典: 由 ...

  2. 预测分析建模 Python与R语言实现

    预测分析建模 Python与R语言实现 目录 前言 第1章 分析与数据科学1第2章 广告与促销10第3章 偏好与选择24第4章 购物篮分析31第5章 经济数据分析42第6章 运营管理56第7章 文本分 ...

  3. EasyDSS高性能RTMP/FLV/HLS(m3u8)/RTSP流媒体服务器技术的HTTP QueryString URL的C++实现方案

    EasyDSS支持HTTP GET接口访问,我们需要获取url的各种参数信息 比如 http://ip:port/action?a=1&b=2&c=3 我们需要知道对应的a.b.c的值 ...

  4. [LeetCode] 80. Remove Duplicates from Sorted Array II 有序数组中去除重复项 II

    Given a sorted array nums, remove the duplicates in-place such that duplicates appeared at most twic ...

  5. 【Python学习之八】设计模式和异常

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 python3.6 一.设计模式1.单例模式确保某一个类只有一个实例, ...

  6. 细数那些Java程序员最容易犯那些错

    java作为最受欢迎程度榜榜首语言,自然是广大开发者使用最多的语言.正因为有如此广泛的使用性,java开发中发生异常也比比皆是,接下来我们就来看看那些java开发中最容易出现的那些错误. 1.重复造轮 ...

  7. 如何在Linux中结合示例使用'cat'和'tac'命令

    上一篇我们讲到了cat的使用示例:https://www.cnblogs.com/WeiLian1024/p/11863057.html 本篇我们将继续延续Cat讲讲Tac 本文是我们讲讲Linux技 ...

  8. 在ensp上STP配置和选路规则

    原理概述 这次我们模拟的实验内容 搭建实验拓扑 搭建完拓扑之后,我们在交换机上启动STP服务,将交换机的STP模式改为普通生成树STP 配置完成之后我们来看一下S1生成树的状态(大约30秒之后,因为生 ...

  9. 【剑指offer】面试题 6. 从尾到头打印链表

    面试题 6. 从尾到头打印链表 NowCoder 题目描述 输入一个链表的头结点,从尾到头反过来打印出每个结点的值. Java 实现 ListNode Class class ListNode { i ...

  10. 【C++札记】赋值兼容

    赋值兼容的规则时在需要使用基类对象的任何地方都可以使用公有派生类对象来替代.公有继承派生类可获得基类中除构造函数,析构函数外的所有成员,能用基类解决的问题,派生类也能解决.更直白点说,如果一个类是从一 ...