A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

这道题是之前那道 Unique Paths 的延伸,在路径中加了一些障碍物,还是用动态规划 Dynamic Programming 来解,使用一个二维的 dp 数组,大小为 (m+1) x (n+1),这里的 dp[i][j] 表示到达 (i-1, j-1) 位置的不同路径的数量,那么i和j需要更新的范围就是 [1, m] 和 [1, n]。状态转移方程跟之前那道题是一样的,因为每个位置只能由其上面和左面的位置移动而来,所以也是由其上面和左边的 dp 值相加来更新当前的 dp 值,如下所示:

dp[i][j] = dp[i-1][j] + dp[i][j-1]

这里就能看出来初始化 d p数组的大小为 (m+1) x (n+1),是为了 handle 边缘情况,当i或j为0时,减1可能会出错。当某个位置是障碍物时,其 dp 值为0,直接跳过该位置即可。这里还需要初始化 dp 数组的某个值,使得其能正常累加。当起点不是障碍物时,其 dp 值应该为1,即dp[1][1] = 1,由于其是由 dp[0][1] + dp[1][0] 更新而来,所以二者中任意一个初始化为1即可。由于之后 LeetCode 更新了这道题的 test case,使得使用 int 型的 dp 数组会有溢出的错误,所以改为使用 long 型的数组来避免 overflow,代码如下:

解法一:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[].empty() || obstacleGrid[][] == ) return ;
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<vector<long>> dp(m + , vector<long>(n + , ));
dp[][] = ;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (obstacleGrid[i - ][j - ] != ) continue;
dp[i][j] = dp[i - ][j] + dp[i][j - ];
}
}
return dp[m][n];
}
};

或者我们也可以使用一维 dp 数组来解,省一些空间,参见代码如下:

解法二:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[].empty() || obstacleGrid[][] == ) return ;
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<long> dp(n, );
dp[] = ;
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (obstacleGrid[i][j] == ) dp[j] = ;
else if (j > ) dp[j] += dp[j - ];
}
}
return dp[n - ];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/63

类似题目:

Unique Paths

Unique Paths III

参考资料:

https://leetcode.com/problems/unique-paths-ii/

https://leetcode.com/problems/unique-paths-ii/discuss/23250/Short-JAVA-solution

https://leetcode.com/problems/unique-paths-ii/discuss/23248/My-C%2B%2B-Dp-solution-very-simple!

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 63. Unique Paths II 不同的路径之二的更多相关文章

  1. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  3. leetcode 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  4. LeetCode: 63. Unique Paths II(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths-ii/description/

  5. [leetcode] 63. Unique Paths II (medium)

    原题 思路: 用到dp的思想,到row,col点路径数量 : path[row][col]=path[row][col-1]+path[row-1][col]; 遍历row*col,如果map[row ...

  6. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  7. 【LeetCode】63. Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  8. [Leetcode Week12]Unique Paths II

    Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...

  9. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

随机推荐

  1. spring context:component-scan

    <context:component-scan base-package="com.zhuguang.jack" <!-- 扫描的基本包路径 --> annota ...

  2. POJ 3041 Asteroids(二分图最大匹配)

    ###题目链接### 题目大意: 给你 N 和 K ,在一个 N * N 个图上有 K 个 小行星.有一个可以横着切或竖着切的武器,问最少切多少次,所有行星都会被毁灭. 分析: 将 1~n 行数加入左 ...

  3. mysql 实现经纬度排序查找功能

    需求如下: 商品有多个门店,用户使用App时需要查找附近门店的商品,商品要进行去重分页. 思路: 1.确认mysql自带经纬度查询函数可以使用. 2.该需求需要利用分组排序,取每个商品最近门店的商品i ...

  4. Java-100天知识进阶-GC种类-知识铺(六)

    知识铺: 致力于打造轻知识点,持续更新每次的知识点较少,阅读不累.不占太多时间,不停的来唤醒你记忆深处的知识点. 一.GC回收器的 4个指标: 1.Throughput,非gc时间与总运行时间的比重. ...

  5. redis之GeoHash

    Redis 提供的 Geo 指令只有 6 个,它只是一个普通的 zset 结构. 增加geoadd 指令携带集合名称以及多个经纬度名称三元组,注意这里可以加入多个三元组127.0.0.1:6379&g ...

  6. laravel模型中非静态方法也能静态调用的原理

    刚开始用laravel模型时,为了方便一直写静态方法,进行数据库操作. <?php namespace App\Models; use Illuminate\Database\Eloquent\ ...

  7. 【Wannafly挑战赛29F】最后之作(Trie树,动态规划,斜率优化)

    [Wannafly挑战赛29F]最后之作(Trie树,动态规划,斜率优化) 题面 牛客 题解 首先考虑怎么计算\([l,r]\)这个子串的不同的串的个数. 如果\(l=1\),我们构建\(Trie\) ...

  8. Neo4j 第九篇:查询数据(Match)

    Cypher使用match子句查询数据,是Cypher最基本的查询子句.在查询数据时,使用Match子句指定搜索的模式,这是从Neo4j数据库查询数据的最主要的方法.match子句之后通常会跟着whe ...

  9. java函数式编程的形式

    java中没有真正的函数变量: 一.所有的函数(拉姆达)表达式,都被解释为functional interface @FunctionalInterface interface GreetingSer ...

  10. DEDECMS安全设置怎样做,您就不会说它不安全了

    dedecms是好用,优化也好,就是不安全,个人是这样认为的,今天 闲着没事 整理了一些有助于dedecms网站安全的一些设置,可以说是目前最全的dedecms安全设置! 其一:保持DEDE更新,及时 ...