题目链接

传送门

题面

题意

给你\(n,k\),要你求\(\sum\limits_{i=1}^{n}i^k\)的值。

思路

根据数学知识或者说题目提示可知\(\sum\limits_{i=1}^{n}i^k\)可以被一个\(k+1\)次多项式表示。

由拉格朗日插值法(推荐学习博客)的公式:\(L(x)=l(x)\sum\limits_{i=1}^{k+2}y_i\frac{w_i}{x-x_i},\text{其中}l(x)=\prod\limits_{i=1}^{k+2}(x-i),y_i=\sum\limits_{j=1}^{i}j^k,w_i=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}\)可以得到结果。

由于本题的特殊性,可以将\(w_i\)进行化简:

\[\begin{aligned}
w_i&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}&\\
&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{i-j}&\\
&=\frac{1}{(i-1)(i-2)*\dots*1*(i-(i+1))\dots(i-(k+2))}&\\
&=(-1)^{k+2-i}\frac{1}{(i-1)!(k+2-i)!}&
\end{aligned}
\]

因此我们可以通过\(O(k+2)\)的复杂度得到\(l(x),y_i,x-x_i\),然后通过预处理阶乘的逆元我们可以\(O((k+2)log(k+2))\)得到\(w_i\),所以总复杂度为在\(O((k+2)log(k+2)+(k+2))\)左右。

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e6 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, k, pp;
int A[maxn], y[maxn], inv[maxn], w[maxn]; int qpow(int x, int n) {
int res = 1;
while(n) {
if(n & 1) res = 1LL * res * x % mod;
x = 1LL * x * x % mod;
n >>= 1;
}
return res;
} void init() {
A[0] = pp = 1;
for(int i = 1; i <= min(n, k + 2); ++i) {
A[i] = 1LL * A[i-1] * i % mod;
inv[i] = qpow(n - i, mod - 2);
pp = (1LL * pp * (n - i) % mod + mod) % mod;
y[i] = (y[i-1] + qpow(i, k)) % mod;
}
for(int i = 1; i <= min(n, k + 2); ++i) {
w[i] = 1LL * A[i-1] * A[k+2-i] % mod;
if((k + 2 - i) & 1) w[i] = mod - w[i];
w[i] = qpow(w[i], mod - 2);
}
} int main() {
scanf("%d%d", &n, &k);
init();
if(n <= k + 2) return printf("%d\n", y[n]) * 0;
int ans = 0;
for(int i = 1; i <= (k + 2); ++i) {
ans = (ans + 1LL * pp * y[i] % mod * w[i] % mod * inv[i] % mod) % mod;
}
printf("%d\n", ans);
return 0;
}

The Sum of the k-th Powers(Educational Codeforces Round 7F+拉格朗日插值法)的更多相关文章

  1. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  2. Educational Codeforces Round 37

    Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...

  3. Educational Codeforces Round 5

    616A - Comparing Two Long Integers    20171121 直接暴力莽就好了...没什么好说的 #include<stdlib.h> #include&l ...

  4. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  5. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  6. Educational Codeforces Round 58 (Rated for Div. 2) 题解

    Educational Codeforces Round 58 (Rated for Div. 2)  题目总链接:https://codeforces.com/contest/1101 A. Min ...

  7. Educational Codeforces Round 26

    Educational Codeforces Round 26 困到不行的场,等着中午显示器到了就可以美滋滋了 A. Text Volume time limit per test 1 second ...

  8. Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code

    Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...

  9. Educational Codeforces Round 69 D. Yet Another Subarray Problem

    Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 题目链接 题意: 求\(\sum_ ...

随机推荐

  1. html中测试div、ul和li、table排列多个块

    前面有三篇博文测试了这三种方式,一.相关博文:LODOP问答部分链接.该文用的是div定位,用的是所有小div相对于大div进行定位,大的div设置relative定位,小的设置absolute相对于 ...

  2. 【tensorflow-v2.0】如何将模型转换成tflite模型

    前言 TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile).嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具 ...

  3. Java的三大版本

    Java的三大版本 Write Once.Run Anywhere JavaSE:标准版(桌面程序,控制台开发......) JavaME:嵌入式开发(手机,小家电......) JavaEE:E企业 ...

  4. 浅谈PHP中pack、unpack的详细用法

    转自:https://segmentfault.com/a/1190000008305573 PHP中有两个函数pack和unpack,很多PHPer在实际项目中从来没有使用过,甚至也不知道这两个方法 ...

  5. beanshell 通过java写数据到文件

    import java.io.*; String filePath = "/data/account.txt"; String conent = vars.get("ac ...

  6. go标准库I/O模型:epoll+多协程

    本文为linux环境下的总结,其他操作系统本质差别不大.本地文件I/O和网络I/O逻辑类似. epoll+多线程的模型 epoll+多线程模型和epoll 单进程区别.优点     对比于redis这 ...

  7. 【题解】Luogu P5288 [HNOI2019]多边形

    原题传送门 HN的题目就是毒瘤 我们有以下猜想: 1.最后所有的线都连到了n号点上 2.最小步数应该为n-3-已经连到n号点的线段数量 本来有些边\((a_i,n)\)会将整个图分割成很多个区间.对于 ...

  8. Oracle数据库基本知识-原理,实例,表空间,用户,表

    1.数据库原理及sql 数据库:是人们存放数据,访问数据,操作数据的存储仓库. DB:数据库,按存储结构来组织,存储和管理的数据仓库 DBMS:数据库管理系统,管理数据库的软件 SQL:结构化查询语言 ...

  9. php中的htmlspecialchars_decode()函数

    htmlspecialchars_decode() 函数把一些预定义的 HTML 实体转换为字符. <?php $str = "This is some <b>bold&l ...

  10. Spring-Cloud之Feign声明式调用-4

    一.Feign受Retrofit.JAXRS-2.0和WebSocket影响,采用了声明式API 接口的风格,将Java Http 客户端绑定到它的内部. Feign 首要目的是将 Java Http ...