题目链接

传送门

题面

题意

给你\(n,k\),要你求\(\sum\limits_{i=1}^{n}i^k\)的值。

思路

根据数学知识或者说题目提示可知\(\sum\limits_{i=1}^{n}i^k\)可以被一个\(k+1\)次多项式表示。

由拉格朗日插值法(推荐学习博客)的公式:\(L(x)=l(x)\sum\limits_{i=1}^{k+2}y_i\frac{w_i}{x-x_i},\text{其中}l(x)=\prod\limits_{i=1}^{k+2}(x-i),y_i=\sum\limits_{j=1}^{i}j^k,w_i=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}\)可以得到结果。

由于本题的特殊性,可以将\(w_i\)进行化简:

\[\begin{aligned}
w_i&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}&\\
&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{i-j}&\\
&=\frac{1}{(i-1)(i-2)*\dots*1*(i-(i+1))\dots(i-(k+2))}&\\
&=(-1)^{k+2-i}\frac{1}{(i-1)!(k+2-i)!}&
\end{aligned}
\]

因此我们可以通过\(O(k+2)\)的复杂度得到\(l(x),y_i,x-x_i\),然后通过预处理阶乘的逆元我们可以\(O((k+2)log(k+2))\)得到\(w_i\),所以总复杂度为在\(O((k+2)log(k+2)+(k+2))\)左右。

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e6 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, k, pp;
int A[maxn], y[maxn], inv[maxn], w[maxn]; int qpow(int x, int n) {
int res = 1;
while(n) {
if(n & 1) res = 1LL * res * x % mod;
x = 1LL * x * x % mod;
n >>= 1;
}
return res;
} void init() {
A[0] = pp = 1;
for(int i = 1; i <= min(n, k + 2); ++i) {
A[i] = 1LL * A[i-1] * i % mod;
inv[i] = qpow(n - i, mod - 2);
pp = (1LL * pp * (n - i) % mod + mod) % mod;
y[i] = (y[i-1] + qpow(i, k)) % mod;
}
for(int i = 1; i <= min(n, k + 2); ++i) {
w[i] = 1LL * A[i-1] * A[k+2-i] % mod;
if((k + 2 - i) & 1) w[i] = mod - w[i];
w[i] = qpow(w[i], mod - 2);
}
} int main() {
scanf("%d%d", &n, &k);
init();
if(n <= k + 2) return printf("%d\n", y[n]) * 0;
int ans = 0;
for(int i = 1; i <= (k + 2); ++i) {
ans = (ans + 1LL * pp * y[i] % mod * w[i] % mod * inv[i] % mod) % mod;
}
printf("%d\n", ans);
return 0;
}

The Sum of the k-th Powers(Educational Codeforces Round 7F+拉格朗日插值法)的更多相关文章

  1. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  2. Educational Codeforces Round 37

    Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...

  3. Educational Codeforces Round 5

    616A - Comparing Two Long Integers    20171121 直接暴力莽就好了...没什么好说的 #include<stdlib.h> #include&l ...

  4. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  5. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  6. Educational Codeforces Round 58 (Rated for Div. 2) 题解

    Educational Codeforces Round 58 (Rated for Div. 2)  题目总链接:https://codeforces.com/contest/1101 A. Min ...

  7. Educational Codeforces Round 26

    Educational Codeforces Round 26 困到不行的场,等着中午显示器到了就可以美滋滋了 A. Text Volume time limit per test 1 second ...

  8. Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code

    Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...

  9. Educational Codeforces Round 69 D. Yet Another Subarray Problem

    Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 题目链接 题意: 求\(\sum_ ...

随机推荐

  1. c++生成数据程序模板

    in.cpp: #include<bits/stdc++.h> #define random(a,b) rand()%(b-a+1)+a using namespace std; cons ...

  2. element ui 下拉框绑定对象并且change传多个参数

    废话不说直接上代码说明真相. <template> <div class="hello"> <span>可以设置的属性 value-key=&q ...

  3. 零基础C#网站开发实战教学(全套)最新更新2019-12-16。。。

    这是林枫山自己编写制作的全套Visual Studio 2013 C# 网站开发案例实战教学教程,欢迎下载学习. 下载目录链接如下(如果链接下载不了,请加QQ:714259796获取教程): 网站界面 ...

  4. Swarm 集群并用 Portainer 管理

    https://blog.csdn.net/zhrq95/article/details/79430284 使用docker-proxy代理服务(所有节点): docker pull docker.i ...

  5. JS系列:三元运算符与循环

     三元运算符 语法: 条件?成立做的事情:不成立做的事情:<=>相当于简单的if/else判断(简化写法) var num = 12; if(num>10){ num ++; }el ...

  6. LeetCode 921. 使括号有效的最少添加(Minimum Add to Make Parentheses Valid) 48

    921. 使括号有效的最少添加 921. Minimum Add to Make Parentheses Valid 题目描述 给定一个由 '(' 和 ')' 括号组成的字符串 S,我们需要添加最少的 ...

  7. 029 SSM综合练习05--数据后台管理系统--订单分页查询

    1.PageHelper介绍 PageHelper是国内非常优秀的一款开源的mybatis分页插件,它支持基本主流与常用的数据库,例如mysql.oracle.mariaDB.DB2.SQLite.H ...

  8. Java基础---Java环境配置

    java 下载:https://www.java.com/zh_CN/ 1.Java安装:jdk9 2. JAVA_HOME 环境变量的配置 在DOS命令行下使用这些工具,就要先进入到JDK的bin目 ...

  9. 如何申请高德地图用户Key

    打开网页https://lbs.amap.com/,进入高德开发平台. 单击箭头处[注册],打开注册页面.(如果您已注册为高德地图开发者可跳过此步骤,直接登录即可). 选择[成为个人开发者],如果您是 ...

  10. python递归函数和河内塔问题

    关于递归函数: 函数内部调用自身的函数. 以n阶乘为例: f(n) = n ! = 1 x 2 x 3 x 4 x...x(n-1)x(n) = n x (n-1) ! def factorial(n ...