实现的是预测 低 出生 体重 的 概率。
尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kindle 版本.

# Logistic Regression
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve logistic regression.
# y = sigmoid(Ax + b)
#
# We will use the low birth weight data, specifically:
# y = 0 or 1 = low birth weight
# x = demographic and medical history data import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
from tensorflow.python.framework import ops
import os.path
import csv ops.reset_default_graph() # Create graph
sess = tf.Session() ###
# Obtain and prepare data for modeling
### # Set name of data file
birth_weight_file = 'birth_weight.csv' # Download data and create data file if file does not exist in current directory
if not os.path.exists(birth_weight_file):
birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')
birth_header = birth_data[0].split('\t')
birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
with open(birth_weight_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(birth_header)
writer.writerows(birth_data)
f.close() # Read birth weight data into memory
birth_data = []
with open(birth_weight_file, newline='') as csvfile:
csv_reader = csv.reader(csvfile)
birth_header = next(csv_reader)
for row in csv_reader:
birth_data.append(row) birth_data = [[float(x) for x in row] for row in birth_data] # Pull out target variable
y_vals = np.array([x[0] for x in birth_data])
# Pull out predictor variables (not id, not target, and not birthweight)
x_vals = np.array([x[1:8] for x in birth_data]) # Set for reproducible results
seed = 99
np.random.seed(seed)
tf.set_random_seed(seed) # Split data into train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Normalize by column (min-max norm)
def normalize_cols(m):
col_max = m.max(axis=0)
col_min = m.min(axis=0)
return (m-col_min) / (col_max - col_min) x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) ###
# Define Tensorflow computational graph¶
### # Declare batch size
batch_size = 25 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[7,1]))
b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target)) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss) ###
# Train model
### # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Actual Prediction
prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
accuracy = tf.reduce_mean(predictions_correct) # Training loop
loss_vec = []
train_acc = []
test_acc = []
for i in range(15000):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = x_vals_train[rand_index]
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)
temp_acc_train = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})
train_acc.append(temp_acc_train)
temp_acc_test = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
test_acc.append(temp_acc_test)
if (i+1)%300==0:
print('Loss = ' + str(temp_loss)) ###
# Display model performance
### # Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.show() # Plot train and test accuracy
plt.plot(train_acc, 'k-', label='Train Set Accuracy')
plt.plot(test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!的更多相关文章

  1. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

  2. 深入浅出TensorFlow(二):TensorFlow解决MNIST问题入门

    2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着 ...

  3. 强化学习之一:从TensorFlow开始(Start from TensorFlow)

    本文是对Tensorflow官方教程的个人(tomqianmaple@outlook.com)中文翻译,供大家学习参考. 官方教程链接 tf的扬帆起航Getting Started With Tens ...

  4. [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems"

    [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed ...

  5. 学习tensorflow之mac上安装tensorflow

    背景 听说谷歌的第二代机器学习的框架tensorflow开源了,我也心血来潮去探探大牛的产品.怎奈安装就折腾了一天,现在整理出来备忘. tensorflow官方网站给出的安装步骤很简单: # Only ...

  6. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  7. Tensorflow从入门到精通之——Tensorflow基本操作

    前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://ww ...

  8. 深度学习之 TensorFlow(二):TensorFlow 基础知识

    1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlo ...

  9. TensorFlow.org教程笔记(一)Tensorflow初上手

    本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决 ...

随机推荐

  1. js:我们应该如何去了解JavaScript引擎的工作原理(转)

    http://www.nowamagic.net/librarys/veda/detail/1579 昨天收到一封来自深圳的一位前端童鞋的邮件,邮件内容如下(很抱歉,未经过他的允许,公开邮件内容,不过 ...

  2. Controller层返回字符串

    刚开始练习,有时候想让Controller层返回一个字符串,但是他却去寻找这个字符串名字的jsp页面,结果肯定会是404的,研究了一会才明白过来,如果Controller需要返回一个值的话,需要再方法 ...

  3. python tkinter module的用法

    tkinter windows下从python3.2版本之后是自动安装的. python3.3之后的引入方式: >>> import _tkinter>>> imp ...

  4. rtems 4.11 IRQ (arm,beagle)

    arm IRQ入口在 cpukit/score/arm/arm_exec_interrupt.S 中,其中BSP最关心就是 bl bsp_interrupt_dispatch 这句,看看beagle ...

  5. 深入理解Java 8 Lambda

    - 转载:blog1, blog2 以上两篇博客是对lambda表达式的深入理解,用于后续加深理解. 如下先从零开始理解lambda, 1. 接触lambda表达式是从python,javascrip ...

  6. erlang和golang的比较

    1)垃圾回收GC 像 Java 一样,Go 的垃圾回收是全局的,这意味着一旦垃圾回收被触发,所有的 goroutine 都会被暂停,造成一段时间的业务延迟. Erlang 的垃圾回收是进程级别的,每一 ...

  7. linux查看某个时间段的log

    若想在linux下查询某个时间段的log,用sed命令示例如下: $ sed -n '/2017-01-04 11:00:00/,/2017-01-04 11:20:55/p'  ejabberd.l ...

  8. Windows上搭建Kafka

    搭建环境: 1,安装JDK JAVA_HOME: C:\Program Files (x86)\Java\jre1.8.0_60(这个是默认安装路径,如果安装过程中更改了安装目录,把更改后的路径填上就 ...

  9. 【BZOJ3924】[Zjoi2015]幻想乡战略游戏 动态树分治

    [BZOJ3924][Zjoi2015]幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网 ...

  10. 详解Vue 实例中的生命周期钩子

    Vue 框架的入口就是 Vue 实例,其实就是框架中的 view model ,它包含页面中的业务处理逻辑.数据模型等,它的生命周期中有多个事件钩子,让我们在控制整个Vue实例的过程时更容易形成好的逻 ...