HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 4492 Accepted Submission(s): 1397
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
6 10 2
60
题解:
1.可知f[n]中a、b的指数符合斐波那契数列,因而可用矩阵快速幂求出。
2.然而如果指数不求模,也可能会溢出。但指数又怎样求模呢?
有如下定理:当m为素数,且a、n互质时, a^n % m = a^(n%(m-1)) % m。
证明:
根据费马小定理,当m为素数,且a、p互质时, a^(m-1) ≡ 1 (mod m),
a^n = a^(k*(m-1)+r) = (a^(m-1))^k * a^r,其中 r = n%(m-1),
那么 a^n % m = ( (a^(m-1))^k * a^r ) % m = (a^(m-1))^k % m * a^r % m = 1 * a^r % m = a^(n%(m-1)) % m 。
所以:当m为素数,且a、n互质时, a^n % m = a^(n%(m-1)) % m 。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = ;
const int MAXN = 1e6+; const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%(MOD-), ret.mat[i][j] %= (MOD-);
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} LL q_pow(LL x, LL y)
{
LL s = ;
while(y)
{
if(y&) s *= x, s %= MOD;
x *= x, x %= MOD;
y >>= ;
}
return s;
} MA tmp = {
, ,
,
}; int main()
{
LL f[], n;
while(scanf("%lld%lld%lld",&f[],&f[],&n)!=EOF)
{
if(n<=)
{
printf("%lld\n", f[n]%MOD);
continue;
} MA s = tmp;
s = qpow(s, n-);
LL p1 = s.mat[][];
LL p2 = s.mat[][];
LL ans = q_pow(f[], p2)*q_pow(f[], p1)%MOD;
printf("%lld\n", ans);
}
}
HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂的更多相关文章
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- bzoj5118: Fib数列2(费马小定理+矩阵快速幂)
题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- 【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...
- Fib数列2 费马小定理+矩阵乘法
题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
随机推荐
- IntelliJ IDEA删除所有断点
参考: http://blog.csdn.net/yanziit/article/details/73459795
- tomcat7设置usernamepassword
因为tomcat是绿色版.今天想在网页上管理项目,却发现没实username和password.打开tomcat-users.xml文件全都是凝视.如图: 将例如以下代码拷贝到tomcat-users ...
- Android的包管理机制浅析(二)
上篇刚好说到获取到了签名信息,以下进入安装过程,直接上源代码: private void installNewPackageLI(PackageParser.Package pkg, int pars ...
- mysql select last_insert_id()函数返回的值
mysql)); 创建表j 插入数据 mysql> insert into j(name) values('wanggiqpg'); Query OK, row affected (0.00 s ...
- binary-tree-maximum-path-sum——二叉树任意一条路径上的最大值
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- Android——滑动事件冲突解决
android中的事件类型分为按键事件和屏幕触摸事件,Touch事件是屏幕触摸事件的基础事件. android系统中的每个View的子类都具有下面三个与TouchEvent处理密切相关的方法: (1) ...
- mysql:“Access denied for user 'root@IP地址'"
请仔细.再仔细确认你的用户名.密码.IP是否有误! 可悲的我老犯这种低级错误,以为用户没权限访问,唉..
- webpack实用配置总结
1.webpack.config.js配置文件为: //处理共用.通用的js var webpack = require('webpack'); //处理html模板 var htmlWebpackP ...
- POCO类
我认为POCO(简单传统CLR对象)重点应该是简单,不跟其他不相关的类进行关联关系或不相关的属性.<NHibernate 4 Beginner Guid>这本书有提到,应该是满足下面三个条 ...
- DateTime操作,时间范围,加减
DB里边存的是char类型数组的时间,例如20151111 12171220000,现在需要把这个时间加减5s,组成 一个时间范围 然后再写存储过程. 想到的办法就是把这个时间先转换成DateTime ...