Keras学习
- 参加比赛用到了keras,虽然之前用tensorflow,但是感觉tensorflow的确不太友好,api比较难读,然后就学习keras使用
- 随着深入,发现keras的api确实比较友好
- 跑了一些example和models: https://github.com/fchollet/keras
- 官网blog:Building powerful image classification models using very little data :从网络中提取特征和fine-tune网络,也有中文的blog讲
We will go over the following options:
training a small network from scratch (as a baseline)
using the bottleneck features of a pre-trained network
fine-tuning the top layers of a pre-trained network
还有一个东西就是:可视化卷积层 How convolutional neural networks see the world
自己也找了一些基于keras的project: Fine-tune Convolutional Neural Network in Keras with ImageNet Pretrained Models:包含很多基本网络,但有些模型参数没有
example里面的demo:
'''Train a simple deep CNN on the CIFAR10 small images dataset.
GPU run command with Theano backend (with TensorFlow, the GPU is automatically used):
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatx=float32 python cifar10_cnn.py
It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs.
(it's still underfitting at that point, though).
'''
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os
batch_size = 32
num_classes = 10
epochs = 1
data_augmentation = False
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
print(x_train.shape[0] // batch_size)
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
- model里面的demo:加载pre-trained模型
- 修改了一个bug: #include_top=include_top
require_flatten=include_top
# -*- coding: utf-8 -*-
'''VGG16 model for Keras.
# Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
'''
from __future__ import print_function
import numpy as np
import warnings
from keras.models import Model
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import GlobalAveragePooling2D
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs
WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
def VGG16(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None,
pooling=None,
classes=1000):
"""Instantiates the VGG16 architecture.
Optionally loads weights pre-trained
on ImageNet. Note that when using TensorFlow,
for best performance you should set
`image_data_format="channels_last"` in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with both
TensorFlow and Theano. The data format
convention used by the model is the one
specified in your Keras config file.
# Arguments
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization)
or "imagenet" (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or `(3, 224, 244)` (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 48.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=48,
data_format=K.image_data_format(),
#include_top=include_top
require_flatten=include_top
)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
if include_top:
# Classification block
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
x = Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='vgg16')
# load weights
if weights == 'imagenet':
# if include_top:
# weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
# WEIGHTS_PATH,
# cache_subdir='models')
# else:
# weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
# WEIGHTS_PATH_NO_TOP,
# cache_subdir='models')
weights_path='vgg16_weights_tf_dim_ordering_tf_kernels.h5'
model.load_weights(weights_path)
if K.backend() == 'theano':
layer_utils.convert_all_kernels_in_model(model)
if K.image_data_format() == 'channels_first':
if include_top:
maxpool = model.get_layer(name='block5_pool')
shape = maxpool.output_shape[1:]
dense = model.get_layer(name='fc1')
layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first')
if K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
return model
if __name__ == '__main__':
model = VGG16(include_top=True, weights='imagenet')
img_path = 'C:\\Users\\Administrator\\Desktop\\pic2.png'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
Keras学习的更多相关文章
- (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ
- Keras 学习之旅(一)
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...
- 官网实例详解-目录和实例简介-keras学习笔记四
官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras 版权声明: ...
- 【干货】Keras学习资源汇总
目录: Keras简介 Keras学习手册 Keras学习视频 Keras代码案例 Keras&NLP Keras&CV Keras项目 一.Keras简介 Keras是Python中 ...
- Keras学习环境配置-GPU加速版(Ubuntu 16.04 + CUDA8.0 + cuDNN6.0 + Tensorflow)
本文是个人对Keras深度学习框架配置的总结,不周之处请指出,谢谢! 1. 首先,我们需要安装Ubuntu操作系统(Windows下也行),这里使用Ubuntu16.04版本: 2. 安装好Ubunt ...
- Keras学习笔记
Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ...
- Keras学习笔记(完结)
使用Keras中文文档学习 基本概念 Keras的核心数据结构是模型,也就是一种组织网络层的方式,最主要的是序贯模型(Sequential).创建好一个模型后就可以用add()向里面添加层.模型搭建完 ...
- Keras学习笔记——Hello Keras
最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...
- 【Keras学习】Sequential模型
序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...
- Keras学习笔记1--基本入门
""" 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...
随机推荐
- sql 查询数据库中每个表的大小
For example: exec sp_MSForEachTable @precommand=N'create table temp(name sysname,rows bigint,reserve ...
- 自建NAS如何使用大于2TB的硬盘(从分区开始)
目录 自建NAS如何使用大于2TB的硬盘(从分区开始) 对分区进行格式化 挂载到某一目录(需设置开机自动挂载) 上传文件测试: 补充 自建NAS如何使用大于2TB的硬盘(从分区开始) 需求说明: 自建 ...
- 九度oj 1005
题目1005:Graduate Admission 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6182 解决:1791 题目描述: It ...
- 修改mysql数据的字符集校验规则使其区分大小写
mysql 使用utf8字符集默认的校验规则collate为utf8_general_ci,不区分数据的大小写 测试如下 ::) character set utf8 collate utf8_bin ...
- centos中代理的设置
最近在校园网中使用一个centos的主机,链接网络是需要代理的,如果是windows主机在Internet选项里设置一下就可以,可是在linux这个任何配置都要更改配置文件的系统里我还真是纠结了好大一 ...
- 最短路---dijsktra--邻接矩阵
; ; //点的个数 int dist[MAXNUM]; int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0) { bool S ...
- HDU——1405The Last Practice(试手map)
The Last Practice Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- java面试题之wait(),notify()和suspend(),resume()之间的区别
wait()方法和notify()方法的区别: 这两个方法都是属于Object类中的,也是配套使用的,当调用这两个方法阻塞时要释放占用的锁,而锁是任何对象都具有的,调用任意对象的wait()方法导致线 ...
- 【bzoj4031】[HEOI2015]小Z的房间 Matrix-Tree定理+高斯消元
[bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的 ...
- Vmware Linux虚拟机磁盘扩容方法
我的LINUX版本是ubuntu12.04 32bit.今天在下载android源代码的时候发现自己最初给这个虚拟机分配的磁盘空间不足了(只有20G).所以就需要给磁盘扩容.网上大致搜索了一下,主要有 ...