We will go over the following options:

    training a small network from scratch (as a baseline)
using the bottleneck features of a pre-trained network
fine-tuning the top layers of a pre-trained network
'''Train a simple deep CNN on the CIFAR10 small images dataset.
GPU run command with Theano backend (with TensorFlow, the GPU is automatically used):
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatx=float32 python cifar10_cnn.py
It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs.
(it's still underfitting at that point, though).
''' from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D import os batch_size = 32
num_classes = 10
epochs = 1
data_augmentation = False
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5' # The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples') # Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax')) # initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy']) x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255 if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images # Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow().
print(x_train.shape[0] // batch_size)
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
workers=4) # Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path) # Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
  • model里面的demo:加载pre-trained模型
  • 修改了一个bug: #include_top=include_top

    require_flatten=include_top
# -*- coding: utf-8 -*-
'''VGG16 model for Keras.
# Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
'''
from __future__ import print_function import numpy as np
import warnings from keras.models import Model
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import GlobalAveragePooling2D
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5' def VGG16(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None,
pooling=None,
classes=1000):
"""Instantiates the VGG16 architecture.
Optionally loads weights pre-trained
on ImageNet. Note that when using TensorFlow,
for best performance you should set
`image_data_format="channels_last"` in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with both
TensorFlow and Theano. The data format
convention used by the model is the one
specified in your Keras config file.
# Arguments
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization)
or "imagenet" (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or `(3, 224, 244)` (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 48.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=48,
data_format=K.image_data_format(),
#include_top=include_top
require_flatten=include_top
) if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top:
# Classification block
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
x = Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='vgg16') # load weights
if weights == 'imagenet':
# if include_top:
# weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
# WEIGHTS_PATH,
# cache_subdir='models')
# else:
# weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
# WEIGHTS_PATH_NO_TOP,
# cache_subdir='models')
weights_path='vgg16_weights_tf_dim_ordering_tf_kernels.h5'
model.load_weights(weights_path)
if K.backend() == 'theano':
layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first':
if include_top:
maxpool = model.get_layer(name='block5_pool')
shape = maxpool.output_shape[1:]
dense = model.get_layer(name='fc1')
layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first') if K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
return model if __name__ == '__main__':
model = VGG16(include_top=True, weights='imagenet') img_path = 'C:\\Users\\Administrator\\Desktop\\pic2.png'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape) preds = model.predict(x)
print('Predicted:', decode_predictions(preds))

Keras学习的更多相关文章

  1. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  2. Keras 学习之旅(一)

    软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...

  3. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  4. 【干货】Keras学习资源汇总

    目录: Keras简介 Keras学习手册 Keras学习视频 Keras代码案例 Keras&NLP Keras&CV Keras项目 一.Keras简介 Keras是Python中 ...

  5. Keras学习环境配置-GPU加速版(Ubuntu 16.04 + CUDA8.0 + cuDNN6.0 + Tensorflow)

    本文是个人对Keras深度学习框架配置的总结,不周之处请指出,谢谢! 1. 首先,我们需要安装Ubuntu操作系统(Windows下也行),这里使用Ubuntu16.04版本: 2. 安装好Ubunt ...

  6. Keras学习笔记

    Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ...

  7. Keras学习笔记(完结)

    使用Keras中文文档学习 基本概念 Keras的核心数据结构是模型,也就是一种组织网络层的方式,最主要的是序贯模型(Sequential).创建好一个模型后就可以用add()向里面添加层.模型搭建完 ...

  8. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  9. 【Keras学习】Sequential模型

    序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...

  10. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

随机推荐

  1. 【Open-Falcon】Linux下安装Open-Falcon

    一.Open-Falcon组件简述 [Open-Falcon绘图相关组件] Agent:  部署在目标机器采集机器监控项 Transfer : 数据接收端,转发数据到后端Graph和Judge Gra ...

  2. [转] sublime插件

    Sublime Text 系列 Sublime Text:学习资源篇 Sublime插件:增强篇 Sublime插件:Markdown篇 Sublime插件:C语言篇 Sublime插件:主题篇 Su ...

  3. MySQL中的DDL(Data Definition Language,数据定义语言)

    create(创建表) 标准的建表语句: create table [模式名.]表名 ( #可以有多个列定义 columnName1 dataType [default expr(这是默认值)], . ...

  4. verilog 实现中值滤波

    图像信号在形成.传输和记录的过程中,由于成像系统.传输介质.工作环境和记录设备等的固有缺陷,不可避免地产生各种类型的噪声,降低了图像的质量,进而影响后续处理(如边缘检测.图像分割.特征提取.模式识别等 ...

  5. 设计模式(一)单例模式:实现 Serializable 接口之后的额外操作

    思想: 一个单例类,无论采取哪一种设计(单元素枚举类除外), 一旦间接或者直接实现 Serializable 接口,为了保证单例,就要多增加一点考虑:保证类在反序列化之后能够保证单例. public ...

  6. 许式伟看 Facebook 发币(上): 区块链, 比特币与 Libra 币

    你好,我是七牛云许式伟. Facebook(脸书)于6月18日发布了其加密数字货币项目白皮书.该数字货币被命名为 Libra(天秤座),象征着平衡与公正.此前,BBC 报道说这个数字货币叫 Globa ...

  7. kb-07线段树--11--区间多重该值多种查询

    /* lazy思想的运用,因为查询多种,如果全记录就太繁了,lazy就是如果该区间的每一个叶子的状态都相同就不用深入下去该值,只要暂时标记下,查询的时候也不用下去,直接计算: */ #include& ...

  8. PHP的发展史,功能与特点

    web1.0时代:所有的代码都是在浏览器端执行的静态脚本,用户请求的也都是服务器上事先已经存在的静态网页,用户和服务器之间不能进行任何的交互!(不需要数据库的支持) web2.0时代:用户和服务器之间 ...

  9. 让旧浏览器支持HTML5新增标签

    首先我们使用JS进行标签创建,为HTML文件创建我们需要的这几个HTML5标签. 接下来,我们需要使用CSS进行这几个HTML5标签的样式控制,这是因为,通过这种方法创建的新标签,默认是行内元素.   ...

  10. net9:图片文件转换成二进制流存入SQL数据库,以及从数据库中读取二进制流输出文件

    原文发布时间为:2008-08-10 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...