题目链接

ACM Computer Factory

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn’t matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2…Si,P Di,1 Di,2…Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1

3 4

15 0 0 0 0 1 0

10 0 0 0 0 1 1

30 0 1 2 1 1 1

3 0 2 1 1 1 1

Sample input 2

3 5

5 0 0 0 0 1 0

100 0 1 0 1 0 1

3 0 1 0 1 1 0

1 1 0 1 1 1 0

300 1 1 2 1 1 1

Sample input 3

2 2

100 0 0 1 0

200 0 1 1 1

Sample Output

Sample output 1

25 2

1 3 15

2 3 10

Sample output 2

4 5

1 3 3

3 5 3

1 2 1

2 4 1

4 5 1

Sample output 3

0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

题意:有N台机器生产电脑,每个电脑有p个部件,,同时每个机器都有一个效率。不同机器能够安装的部件不一定一样,面对不同的机器,我们需要让两个机器对接起来。

题解: 这个题需要通过拆点去做,机器与机器是之间的传输是无穷大的但是机器内部并不是,下面是我画的第一个样例的图示

我用的是EK算法。代码不够精炼,还望海涵。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=100;
int in[55][20],out[50][20];
int cap[MAXN][MAXN];
int pre[MAXN];
bool vis[MAXN];
int p,n;
int N=n*2;
bool match(int *a,int *b)
{
for(int i=1;i<=p;i++)
{
if(a[i]==b[i]) continue;
if(b[i]==2) continue;
return false;
}
return true;
}
bool matchs(int *a)
{
for(int i=1;i<=p;i++)
{
if(a[i]==1)
return false;
}
return true;
}
bool matcht(int *b)
{
for(int i=1;i<=p;i++)
{
if(b[i]==0)
return false;
}
return true;
}
bool bfs(int s,int t)
{
memset(pre, -1, sizeof(pre));
queue<int> que;
memset(vis,0 , sizeof(vis));
vis[s]=true;
pre[s]=s;
que.push(s);
int p;
while(!que.empty())
{
p=que.front();
que.pop();
for(int i=0;i<=N;i++)
{
if(!vis[i]&&cap[p][i]>0)
{
vis[i]=true;
pre[i]=p;
if(i==t) return true;
que.push(i);
}
}
}
return false;
}
int EK(int s,int t)
{
int ans=0,d;
while (bfs(s,t))
{
d=INF;
for(int i=t;i!=s;i=pre[i])
d=min(d,cap[pre[i]][i]);
for(int i=t;i!=s;i=pre[i])
{
cap[pre[i]][i]-=d;
cap[i][pre[i]]+=d;
}
ans+=d;
}
return ans;
}
int main()
{
while(scanf("%d%d",&p,&n )!=EOF)
{
memset(cap,0 , sizeof(cap));
int c;
for(int i=1;i<=n;i++)
{
scanf("%d",&c);
cap[2*i-1][2*i]=c;
for(int j=1;j<=p;j++)
scanf("%d",&in[i][j]);
for(int j=1;j<=p;j++)
scanf("%d",&out[i][j]);
}
N=2*n+1;
for(int i=1;i<=n;i++)
{
if(matchs(in[i]))
{
cap[0][2*i-1]=INF;
// printf("%d %d---\n",0,2*i-1);
}
if(matcht(out[i]))
{
cap[2*i][N]=INF;
// printf("%d %d++++\n",2*i,N);
}
for(int j=1;j<=n;j++)
{
if(match(out[i],in[j]))
{
cap[2*i][2*j-1]=INF;
// printf("%d %d##\n",2*i,2*j-1);
}
}
}
printf("%d ",EK(0,N));
int ans=0;
int x[MAXN],y[MAXN],z[MAXN];
for (int i = 1; i <n; ++i)
{
for(int j=1;j<=n;j++)
{
if(match(out[i],in[j]))
{
if(cap[2*i][2*j-1]!=INF)
{
ans++;
x[ans-1]=i;y[ans-1]=j;z[ans-1]=INF-cap[2*i][2*j-1];
if(z[ans-1]<0)//此处是考虑会把回去的边计算上,我们需要把他去掉。
ans--; }
}
}
}
printf("%d\n",ans);
for(int i=0;i<ans;i++)
printf("%d %d %d\n",x[i],y[i],z[i]);
}
return 0;
}

POJ3436------ACM Computer Factory的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  3. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  4. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  5. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  6. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  7. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  8. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  9. POJ3436 ACM Computer Factory【EK算法】

    题意: 每个电脑需要P个组成部分,现有N的机器,每个机器都可以对电脑进行加工,不过加工的前提是某些部分已经存在,加工后会增加某些部分.且在单位时间内,每个机器的加工都有一个最大加工容量,求能得到的最大 ...

  10. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. flask--数据库连接--URL

    使用URL制定数据库 数据库引擎 URL MySQL mysql://username:password@hostname/database Postgres postgresql://usernam ...

  2. python中*args, **kwargs理解

    先来看个例子: def foo(*args, **kwargs): print 'args = ', args print 'kwargs = ', kwargs print '----------- ...

  3. 金三银四面试季节之Java 核心面试技术点 - JVM 小结

    原文:https://github.com/linsheng9731/notebook/blob/master/java/JVM.md 描述一下 JVM 的内存区域 程序计数器(PC,Program ...

  4. mysql-作业

    一.表关系 请创建如下表,并创建相关约束                 班级表:class       学生表:student       cid caption grade_id   sid sn ...

  5. Git入门与常用操作简述

    下载gitbash及使用指南: http://rogerdudler.github.io/git-guide/index.zh.html 初次使用 配置用户名和邮箱: $ git config --g ...

  6. cms-详细页面-1

    cms-详细信息页面设计思路:点击主页面然后查询详细信信,把查询出来的数据放大modelandvie里面,然后返回前台,然后在跳转页面取出来显示:代码:mapper: <?xml version ...

  7. LeetCode Length of Last Word 最后一个字的长度

    class Solution { public: int lengthOfLastWord(const char *s) { ; string snew=s; ,len=strlen(s); ]; ) ...

  8. IFEO 映像文件劫持

    “映像劫持”,也被称为“IFEO”(Image File Execution Options) 映像劫持的根本就是被恶意篡改了注册表HKEY_LOCAL_MACHINE\SOFTWARE\Micros ...

  9. js中arr.sort的用法

    sort(sortfunction)为JS的数组对象(Array)的一个方法,提供排序功能 参数 sortFunction 为可选项,是用来确定排序原则的js函数, 这个函数有两个参数,分别代表每次排 ...

  10. World Wind Java开发之七——读取本地栅格文件(影像+高程)构建三维场景(转)

    http://blog.csdn.net/giser_whu/article/details/41679515 首先,看下本篇博客要达到的效果图: 下面逐步分析如何加载影像及高程文件. 1.World ...