题目链接

ACM Computer Factory

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn’t matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2…Si,P Di,1 Di,2…Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1

3 4

15 0 0 0 0 1 0

10 0 0 0 0 1 1

30 0 1 2 1 1 1

3 0 2 1 1 1 1

Sample input 2

3 5

5 0 0 0 0 1 0

100 0 1 0 1 0 1

3 0 1 0 1 1 0

1 1 0 1 1 1 0

300 1 1 2 1 1 1

Sample input 3

2 2

100 0 0 1 0

200 0 1 1 1

Sample Output

Sample output 1

25 2

1 3 15

2 3 10

Sample output 2

4 5

1 3 3

3 5 3

1 2 1

2 4 1

4 5 1

Sample output 3

0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

题意:有N台机器生产电脑,每个电脑有p个部件,,同时每个机器都有一个效率。不同机器能够安装的部件不一定一样,面对不同的机器,我们需要让两个机器对接起来。

题解: 这个题需要通过拆点去做,机器与机器是之间的传输是无穷大的但是机器内部并不是,下面是我画的第一个样例的图示

我用的是EK算法。代码不够精炼,还望海涵。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=100;
int in[55][20],out[50][20];
int cap[MAXN][MAXN];
int pre[MAXN];
bool vis[MAXN];
int p,n;
int N=n*2;
bool match(int *a,int *b)
{
for(int i=1;i<=p;i++)
{
if(a[i]==b[i]) continue;
if(b[i]==2) continue;
return false;
}
return true;
}
bool matchs(int *a)
{
for(int i=1;i<=p;i++)
{
if(a[i]==1)
return false;
}
return true;
}
bool matcht(int *b)
{
for(int i=1;i<=p;i++)
{
if(b[i]==0)
return false;
}
return true;
}
bool bfs(int s,int t)
{
memset(pre, -1, sizeof(pre));
queue<int> que;
memset(vis,0 , sizeof(vis));
vis[s]=true;
pre[s]=s;
que.push(s);
int p;
while(!que.empty())
{
p=que.front();
que.pop();
for(int i=0;i<=N;i++)
{
if(!vis[i]&&cap[p][i]>0)
{
vis[i]=true;
pre[i]=p;
if(i==t) return true;
que.push(i);
}
}
}
return false;
}
int EK(int s,int t)
{
int ans=0,d;
while (bfs(s,t))
{
d=INF;
for(int i=t;i!=s;i=pre[i])
d=min(d,cap[pre[i]][i]);
for(int i=t;i!=s;i=pre[i])
{
cap[pre[i]][i]-=d;
cap[i][pre[i]]+=d;
}
ans+=d;
}
return ans;
}
int main()
{
while(scanf("%d%d",&p,&n )!=EOF)
{
memset(cap,0 , sizeof(cap));
int c;
for(int i=1;i<=n;i++)
{
scanf("%d",&c);
cap[2*i-1][2*i]=c;
for(int j=1;j<=p;j++)
scanf("%d",&in[i][j]);
for(int j=1;j<=p;j++)
scanf("%d",&out[i][j]);
}
N=2*n+1;
for(int i=1;i<=n;i++)
{
if(matchs(in[i]))
{
cap[0][2*i-1]=INF;
// printf("%d %d---\n",0,2*i-1);
}
if(matcht(out[i]))
{
cap[2*i][N]=INF;
// printf("%d %d++++\n",2*i,N);
}
for(int j=1;j<=n;j++)
{
if(match(out[i],in[j]))
{
cap[2*i][2*j-1]=INF;
// printf("%d %d##\n",2*i,2*j-1);
}
}
}
printf("%d ",EK(0,N));
int ans=0;
int x[MAXN],y[MAXN],z[MAXN];
for (int i = 1; i <n; ++i)
{
for(int j=1;j<=n;j++)
{
if(match(out[i],in[j]))
{
if(cap[2*i][2*j-1]!=INF)
{
ans++;
x[ans-1]=i;y[ans-1]=j;z[ans-1]=INF-cap[2*i][2*j-1];
if(z[ans-1]<0)//此处是考虑会把回去的边计算上,我们需要把他去掉。
ans--; }
}
}
}
printf("%d\n",ans);
for(int i=0;i<ans;i++)
printf("%d %d %d\n",x[i],y[i],z[i]);
}
return 0;
}

POJ3436------ACM Computer Factory的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  3. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  4. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  5. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  6. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  7. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  8. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  9. POJ3436 ACM Computer Factory【EK算法】

    题意: 每个电脑需要P个组成部分,现有N的机器,每个机器都可以对电脑进行加工,不过加工的前提是某些部分已经存在,加工后会增加某些部分.且在单位时间内,每个机器的加工都有一个最大加工容量,求能得到的最大 ...

  10. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. linux启动mysql报错 Starting MySQL... ERROR! The server quit without updating PID file (XXXX pid文件位置)

    最近在云服务器上安装mysql  启动时报错了,从错误中可以看出,定位在pid文件上,有三种解决方案 1.重启服务器:因为服务器更新时,可能会禁用某些守护进程,重启后即可恢复 2.删除配置文件,重启试 ...

  2. javascript动态修改对象的属性名

    在做东钿业务系统的时候,经常碰到写很多重复的ajax对接,于是就想封装一个方法,但是接收data的字段名不一样,所以就需要用到动态对象属性名这个写法了.其实很简单.直接看一下代码吧.

  3. pm2部署node应用

    背景: 很早就知道了pm2的强大功能,部署,多进程部署,负载均衡等等,但是一直没有取尝试使用,每次写完代码就没关心部署的事了.最近有空就想着把pm2的部署流程走一遍,顺便整理出来. 环境: 1.本地: ...

  4. JFinal常量配置学习笔记

    在继承 JFinalConfig 类时,需要 实现 /** * Config constant */ public abstract void configConstant(Constants me) ...

  5. HDU3874 线段树 + 离线处理

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3874 , 线段树(或树状数组) + 离线处理 下午做了第一道离线处理的题目(HDU4417),多少有点 ...

  6. Django疑难问题

    1页面出现中文报错 :Non-ASCII character '\xe9' in file E:\CPaas\cpaas\views.py 解决:在页面顶部加入#coding=utf-8 2执行syn ...

  7. 【BZOJ1045】糖果传递(基于贪心的数学题)

    点此看题面 大致题意: 有\(n\)个小朋友坐成一圈,每人有\(a[i]\)个糖果.每人只能给左右两人传递糖果,传递一个糖果代价为1,求使所有人获得均等糖果的最小代价. 数学转换 这题其实是一道带有浓 ...

  8. 题解 CF20A 【BerOS file system】

    对于此题,我的心近乎崩溃 这道题,注意点没有什么,相信大佬们是可以自己写出来的 我是蒟蒻,那我是怎么写出来的啊 好了,废话少说,开始进入正题 这道题,首先我想到的是字符串的 erase 函数,一边运行 ...

  9. System.Threading

    线程:定义为可执行应用程序中的基本执行单元. 应用程序域:一个应用程序内可能有多个线程. 上下文:一个线程可以移动到一个特定的上下文的实体 导入命名空间: //得到正在执行这个方法的线程 Thread ...

  10. js日期类型date

    javascript语言核心包括Date()构造函数,用来创建表示日期和时间的函数 //返回当前的日期和时间      var today = new Date();      //2011年1月1日 ...