TensorFlow学习笔记(6):TensorBoard之Embeddings
本文基于TensorFlow官网的How-Tos写成。
TensorBoard是TensorFlow自带的一个可视化工具,Embeddings是其中的一个功能,用于在二维或三维空间对高维数据进行探索。
An embedding is a map from input data to points in Euclidean space.
本文使用MNIST数据讲解Embeddings的使用方法。
代码
# -*- coding: utf-8 -*-
# @author: 陈水平
# @date: 2017-02-08
# @description: hello world program to set up embedding projector in TensorBoard based on MNIST
# @ref: http://yann.lecun.com/exdb/mnist/, https://www.90168.org/images/mnist_10k_sprite.png
#
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
from tensorflow.examples.tutorials.mnist import input_data
import os
PATH_TO_MNIST_DATA = "MNIST_data"
LOG_DIR = "log"
IMAGE_NUM = 10000
# Read in MNIST data by utility functions provided by TensorFlow
mnist = input_data.read_data_sets(PATH_TO_MNIST_DATA, one_hot=False)
# Extract target MNIST image data
plot_array = mnist.test.images[:IMAGE_NUM] # shape: (n_observations, n_features)
# Generate meta data
np.savetxt(os.path.join(LOG_DIR, 'metadata.tsv'),www.90168.org mnist.test.labels[:IMAGE_NUM], fmt='%d')
# Download sprite image
# https://www.tensorflow.org/images/mnist_10k_sprite.png, 100x100 thumbnails
PATH_TO_SPRITE_IMAGE = os.path.join(LOG_DIR, 'mnist_10k_sprite.png')
# To visualise your embeddings, there are 3 things you need to do:
# 1) Setup a 2D tensor variable(s) that holds your embedding(s)
session = tf.InteractiveSession()
embedding_var = tf.Variable(plot_array, name='embedding')
tf.global_variables_initializer().run()
# 2) Periodically save your embeddings in a LOG_DIR
# Here we just save the Tensor once, so we set global_step to a fixed number
saver = tf.train.Saver()
saver.save(session, os.path.join(LOG_DIR, "model.ckpt"), global_step=0)
# 3) Associate metadata and sprite image with your embedding
# Use the same LOG_DIR where you stored your checkpoint.
summary_writer = tf.summary.FileWriter(LOG_DIR)
config = projector.ProjectorConfig()
# You can add multiple embeddings. Here we add only one.
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
# Link this tensor to its metadata file (e.g. labels).
embedding.metadata_path = os.path.join(LOG_DIR, 'metadata.tsv')
# Link this tensor to its sprite image.
embedding.sprite.image_path = PATH_TO_SPRITE_IMAGE
embedding.sprite.single_image_dim.extend([28, 28])
# Saves a configuration file that TensorBoard will read during startup.
projector.visualize_embeddings(summary_writer, config)
首先,从这里下载图片,放到log目录下;然后执行上述代码;最后,执行下面的命令启动TensorBoard。
tensorboard --logdir=log
执行后,命令行会显示如下提示信息:
Starting TensorBoard 39 on port 6006
(You can navigate to http://xx.xxx.xx.xxx:6006)
打开浏览器,输入上面的链接地址,点击导航栏的EMBEDDINGS即可看到效果:
资源
TensorFlow学习笔记(6):TensorBoard之Embeddings的更多相关文章
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
随机推荐
- Mac下安装ElasticSearch及其插件
目录 环境介绍 安装过程 安装Kibana 环境介绍 软件版本:ElasticSearch7.0.0 Kibana7.0.0 系统环境:mac 环境 安装过程 官网下载 ElasticSearch7. ...
- iOS - KVO 简单应用
KVO(键值监听)全称 Key Value Observing.使用KVO可以实现视图组件和数据模型的分离,视图作为监听器,当模型的属性值发生变化后,监听器可以做相应的处理.KVO的方法由NSKeyV ...
- Linux环境下mysql的root密码忘记解决方法(2种)
方法一: 1.首先确认服务器出于安全的状态,也就是没有人能够任意地连接MySQL数据库. 因为在重新设置MySQL的root密码的期间,MySQL数据库完全出于没有密码保护的 状态下,其他的用户也可以 ...
- 【转载】UWP应用设置和文件设置:科普
数据有两个基本的分类,应用数据和用户数据,而用户数据则为由用户拥有的数据,如文档,音乐或电子邮件等,下面将大致的介绍一下应用数据的基本操作. 应用数据:应用数据包含APP的状态信息(如运行时状态,用户 ...
- UVA 714 Copying Books 抄书 (二分)
题意:把一个包含m个正整数的序列划分成k个非空的连续子序列.使得所有连续子序列的序列和Si的最大值尽量小. 二分,每次判断一下当前的值是否满足条件,然后修改区间.注意初始区间的范围,L应该为所有正整数 ...
- Python3之偏函数
通过设定参数的默认值,可以降低函数调用的难度.偏函数可以做到这一点 int()函数可以把字符串转换成十进制整数,当传入字符串时,int()默认把字符串为十进制 >>> int('12 ...
- python_85_sys模块
import sys print(sys.version)#当前python版本的详细信息 print(sys.argv)#脚本中运行,读取参数
- 线程的sleep方法
- numpy的linspace使用详解
文档地址: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html Parameters(参数): start ...
- Redis 和缓存技术
Redis 是什么?什么作用?优点和缺点? https://blog.csdn.net/weixin_42295141/article/details/81380633 Redis 的主要功能哨兵+复 ...