题目描述

无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu

×Wv 的联合权值。

请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入输出格式

输入格式:

输入文件名为link .in。

第一行包含1 个整数n 。

接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。

最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。

输出格式:

输出文件名为link .out 。

输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值

和所有联合权值之和。由于所有联合权值之和可能很大,[b]输出它时要对10007 取余。 [/b]

输入输出样例

输入样例#1:

5
1 2
2 3
3 4
4 5
1 5 2 3 10
输出样例#1:

20 74

说明

本例输入的图如上所示,距离为2 的有序点对有( 1,3) 、( 2,4) 、( 3,1) 、( 3,5) 、( 4,2) 、( 5,3) 。

其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。

【数据说明】

对于30% 的数据,1 < n≤ 100 ;

对于60% 的数据,1 < n≤ 2000;

对于100%的数据,1 < n≤ 200 , 000 ,0 < wi≤ 10, 000 。

思路:

  对于每个点处理父亲节点和子节点

  即把他们的dis求和作为这个点的sum

  还用他们的max和max_

  用一次dfs处理

  然后第二次dfs

  求ans_sum和ans_max;

  轻松ac

来,上代码:

#include <cstdio>
#include <iostream>
#include <algorithm> #define mod 10007
#define maxn 200001 using namespace std; struct TreeNodeType {
int f,dis,max_,flag,max__;
long long int sum;
};
struct TreeNodeType tree[maxn]; struct EdgeType {
int to,next;
};
struct EdgeType edge[maxn<<]; int if_z,n,head[maxn],num,ans_s,ans_m; char Cget; inline void read_int(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int from,int to)
{
edge[++num].to=from,edge[num].next=head[to],head[to]=num;
edge[++num].to=to,edge[num].next=head[from],head[from]=num;
} void search(int now,int fa)
{
tree[now].f=fa,tree[now].max_=tree[fa].dis;
tree[now].flag=fa,tree[now].sum+=tree[fa].dis;
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==fa) continue;
tree[now].sum+=tree[edge[i].to].dis;
if(tree[edge[i].to].dis>tree[now].max_)
{
tree[now].flag=edge[i].to;
tree[now].max_=tree[edge[i].to].dis;
}
search(edge[i].to,now);
}
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==tree[now].flag) continue;
tree[now].max__=max(tree[now].max__,tree[edge[i].to].dis);
}
} void search_(int now)
{
if(tree[now].f!=)
{
tree[tree[now].f].sum-=tree[now].dis;
ans_s=(ans_s+(tree[now].dis)*tree[tree[now].f].sum)%mod;
if(tree[tree[now].f].flag!=now) ans_m=max(ans_m,tree[now].dis*tree[tree[now].f].max_);
else ans_m=max(ans_m,tree[now].dis*tree[tree[now].f].max__);
}
for(int i=head[now];i;i=edge[i].next)
{
if(edge[i].to==tree[now].f) continue;
search_(edge[i].to);
}
} int main()
{
read_int(n);
int from,to;
for(int i=;i<n;i++)
{
read_int(from),read_int(to);
edge_add(from,to);
}
for(int i=;i<=n;i++) read_int(tree[i].dis);
search(,),search_();
cout<<ans_m<<' '<<(ans_s<<)%mod<<endl;
return ;
}

AC日记——联合权值 洛谷 P1351的更多相关文章

  1. AC日记——[HAOI2015]树上操作 洛谷 P3178

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  2. AC日记——[SDOI2015]星际战争 洛谷 P3324

    题目描述 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战. 在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值 ...

  3. AC日记——网络最大流 洛谷 P3376

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  4. AC日记——I Hate It 洛谷 P1531

    题目背景 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感. 题目描述 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的 ...

  5. AC日记——神奇的幻方 洛谷 P2615(大模拟)

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  6. AC日记——[CQOI2009]DANCE跳舞 洛谷 P3153

    [CQOI2009]DANCE跳舞 思路: 二分+最大流: 代码: #include <cstdio> #include <cstring> #include <iost ...

  7. AC日记——松江1843路 洛谷七月月赛

    松江1843路 思路: 三分: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define ...

  8. AC日记——严酷的训练 洛谷 P2430

    严酷的训练 思路: 背包: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 5005 int n,m,bi[m ...

  9. AC日记——[SDOI2010]大陆争霸 洛谷 P3690

    [SDOI2010]大陆争霸 思路: dijkstra模板: 代码: #include <bits/stdc++.h> using namespace std; #define maxn ...

随机推荐

  1. 常用的windows小工具指令和如何打开自定义的程序

    windows可以通过 开始->运行->输入程序名 或 windows键+R键 两种方式来启动windows中自带的程序或手动安装的程序.下面介绍一些常用的windows工具的指令和如何打 ...

  2. win10安装pytorch——前面有坑,快跳进去鸭

    嗯!花费了不少时间才把pytorch安装成功.主要原因就是: 清华和中科大的Anaconda国内镜像源关闭了 activate.bat 不是内部或外部命令(这个真实奇怪) 1. 安装过程 可以去Ana ...

  3. 简单了解hash

    hash,译为散列或哈希.就是把任意长度的输入(可变类型除外)经过hash算法,输出成固定长度的输出,该输出就是hash值.哈希值比原有的输出占用空间要小,但是不同的输出可能会hash出一样的值,所以 ...

  4. 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven

    131072K   One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...

  5. jmeter jdbc各字段的含义

    JDBC采样器各选项的含义如下: 1.Variable Name 其中的Variable Name和上面JDBC Connection Configuration中的Variable Name相同,这 ...

  6. 提交AppStore被拒原因总结

    (1)Information Needed We began the review of your app but aren’t able to continue because we need ad ...

  7. webdriver高级应用- 禁止Chrome浏览器的PDF和Flash插件

    #encoding=utf-8 from selenium import webdriver # 导入Options类 from selenium.webdriver.chrome.options i ...

  8. Leetcode33--->Search in Rotated Sorted Array(在旋转数组中找出给定的target值的位置)

    题目: 给定一个旋转数组,但是你不知道旋转位置,在旋转数组中找出给定target值出现的位置:你可以假设在数组中没有重复值出现 举例: (i.e., 0 1 2 4 5 6 7 might becom ...

  9. 大数据学习——scala入门练习

    package com /** * Created by ZX on 2015/11/6. */ object VariableDemo { def main(args: Array[String]) ...

  10. cobbler常用目录/命令(三)

    常用目录: /var/www/cobbler/ks_mirror/                cobbler distro文件目录 /var/lib/tftpboot/pxelinux.cfg/d ...