GCD

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 3   Accepted Submission(s) : 2
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 
Output
For each test case,output the answer on a single line.
 
Sample Input

3
1 1
10 2
10000 72

 
Sample Output
1
6
260
 
Source
ECJTU 2009 Spring Contest
 题目大意: 
  第一行输入T,表示有T组数据。然后每一行输入N和M,分别表示所要求数的范围为1~N,比较值为M。
 题目意思很简单,就是求解,在数的范围内X∈[1~N],存在多少个X使得GCD(X,N)>=M,统计X符合要求的个数。
 用膝盖骨想想也知道,如果直接暴力遍历N次,每次操作的复杂度高达10^9,肯定会超时的。常规的方法肯定不行。
 
 ①首先,补充一下关于GCD()的一些基础知识。
  1,如果GCD(a,b)=c,则可以知道GCD(a/c,b/c)=1;(  GCD(a,b)=c  <=>  GCD(a/c,b/c)=1  )
  2,设GCD(a,b)=c,如果想要GCD(a,b*d)=c,用①_1可知,
    只需满足GCD(a/c,(b/c)*d)=1即可(这个限制既为,满足最大公约数的要求).
 
 ②然后,我们所要求的是GCD(X,N)>=M,也就是说我们要求一个GCD(X,N)=Z,的数,
  1,如果M==1,则可以知道在[1,N]中任意数X的GCD(X,N)>=1,所以符合要求的个数为N。
  2,如果M>1,则表示我们需要找一个GCD(X,N)>1的数。这样我们就知道X肯定会是N的除了1以外的约数、
  因为,X只有是N除了1以外的约数,才可能会有GCD(X,N)>1存在。而且,GCD(N,X)=X;(约数嘛,你懂得~)
 
 ③再者,我们需要统计的数符合要求的X的个数呢?
  1,正如②_2可以知道GCD(N,X)=X,能够使得GCD()=X的数不一定只有X本身,说的正确点的应该是GCD(N,X*q)=X,
  只需要计算1~N中有多少个(X*q)即可。但是,q是有受限制的,需要满足上述①_2的要求。
         (比如:GCD(15,5)=5,GCD(15,5*3)=15;)
  2,由①_2可知,要使得GCD(N,X*q)=X,需要满足GCD(N/X,q)=1.也就是统计1~N/X中有多少个数与N/X互质。
   是不是觉得有点熟悉了的?=>求1~N中,有多少个与N互质的数,不就是欧拉函数嘛,SUM+=Eular(N/X);
 ④最后,如何不重复的统计其公约数为符合条件X的数呢?
  其实,你每次用欧拉函数统计出来的那些数,都是唯一的,如上面③_2所说的,q是有受限制的,因为这个限制,使得所求出的个数都为不重复的、所以,只需要统计N的符合要求的约数Xi,SUM+=Eular(N/Xi),既为答案、
 #include <iostream>
 #include <stdio.h>
 #include <string.h>
 using namespace std;
 int Eular(int N)
 {
     ,i;
     ;i*i<=N;i++)
     {
         )
         {
             N/=i;sign*=i-;
             )
             {N/=i;sign*=i;}
         }
     }
     )
     sign*=N-;
     return sign;
 }
 int main()
 {
     int A,B,T,i,sign;
     scanf("%d",&T);
     while(T--)
     {
         scanf("%d%d",&A,&B);
         ,sign=;i*i<=A;i++)/*分解约数*/
            )       /*分解约数,同时判断两边*/
            {           /*如果为平方数则主需要判断一次*/
                 if(i>=B)
                     sign+=Eular(A/i);
                 if((A/i)!=i&&(A/i)>=B)/*判断是否为平方数*/
                     sign+=Eular(i);
            }
         printf("%d\n",sign);/*输出答案*/
     }
     ;
 }

【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)的更多相关文章

  1. hdu2588 GCD 给定n,m。求x属于[1,n]。有多少个x满足gcd(x,n)>=m; 容斥或者欧拉函数

    GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Sub ...

  2. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  3. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

  4. 【poj2154】Color Polya定理+欧拉函数

    题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...

  5. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  6. 【HDU4676】Sum Of Gcd(莫队+欧拉函数)

    点此看题面 大致题意: 多组询问,求\(\sum_{i=L}^R\sum_{j=i+1}^Rgcd(i,j)\). 推式子 这道题我们可以考虑,每个因数\(d\)被统计答案的次数,肯定与其出现次数有关 ...

  7. poj2154Color polya定理+欧拉函数优化

    没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...

  8. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  9. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

随机推荐

  1. 安装器---Inno Setup

    Inno Setup[1]  用Delphi写成,其官方网站同时也提供源程序免费下载.它虽不能与Installshield这类恐龙级的安装制作软件相比,但也当之无愧算是后起之秀.Inno Setup是 ...

  2. es6语法

    let定义变量,特性: 1,不允许重复定义 2,不存在预解析 3,变量存在于会块级作用域 即{}内部 const : 定义常量,常量的值不能修改,若常量是对象 对象下的属性可修改. 解构赋值语法: 数 ...

  3. 深入理解java回调机制

    Callback的定义 一般在程序中执行回调函数是,是知道回调函数是预留给系统调用的,而且知道该函数的调用时机. 比如说android应用定义一个button对象,并给按钮添加一个监听事件," ...

  4. HDU 4262 Juggler

    点我看题 初步想法是模拟,找到下一个位置并记录操作数,O(n^2)肯定会超时. 那么进行优化,会发现到下一位置的操作数就是两个位置之间存在的数的个数,于是就变成了计数问题. 不难想到用树状数组或线段树 ...

  5. Arpa's loud Owf and Mehrdad's evil plan

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  6. android studio导入第三方源码模块

    从网上得到的但三方源码模块,如果直接导入到自己的项目里的时候,可能需要比较长的时间,甚至不成功. 在导入之间,还是应该将模块里的 build.gradle 编辑一下,使其与自己的android stu ...

  7. Mysql表结构定义及相关语法

    mysql语法及相关命令1.每个sql命令都需要使用分号来完成2.可以将一个命令写成多行3.可以通过\c来取消本行命令4.可以通过\g.exit.ctrl+c或者quit来退出当前客户端5.可以通过使 ...

  8. Cron表达式的详细用法

    字段 允许值 允许的特殊字符 秒 0-59 , - * / 分 0-59 , - * / 小时 0-23 , - * / 日期 1-31 , - * ? / L W C 月份 1-12 或者 JAN- ...

  9. 15个实用find命令

    除了在一个目录结构下查找文件这种基本的操作,你还可以用find命令实现一些实用的操作,使你的命令行之旅更加简易. 本文将介绍15种无论是于新手还是老鸟都非常有用的Linux find命令. 1. 用文 ...

  10. 《JavaScript高级程序设计》读书笔记 ---基本包装类型

    为了便于操作基本类型值,ECMAScript 还提供了3 个特殊的引用类型:Boolean.Number 和String.这些类型与本章介绍的其他引用类型相似,但同时也具有与各自的基本类型相应的特殊行 ...