Find a path

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1536    Accepted Submission(s): 673

Problem Description
Frog fell into a maze. This maze is a rectangle containing N rows and M columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step, he can go to either the grid right to his current location or the grid below his location. Formally, he can move from grid (x, y) to (x + 1, y) or (x, y +1), if the grid he wants to go exists.
Frog is a perfectionist, so he'd like to find the most beautiful path. He defines the beauty of a path in the following way. Let’s denote the magic values along a path from (1, 1) to (n, m) as A1,A2,…AN+M−1, and Aavg is the average value of all Ai. The beauty of the path is (N+M–1) multiplies the variance of the values:(N+M−1)∑N+M−1i=1(Ai−Aavg)2
In Frog's opinion, the smaller, the better. A path with smaller beauty value is more beautiful. He asks you to help him find the most beautiful path.  
 
Input
The first line of input contains a number T indicating the number of test cases (T≤50).
Each test case starts with a line containing two integers N and M (1≤N,M≤30). Each of the next N lines contains M non-negative integers, indicating the magic values. The magic values are no greater than 30.
 
Output
For each test case, output a single line consisting of “Case #X: Y”. X is the test case number starting from 1. Y is the minimum beauty value.
 
Sample Input
1
2 2
1 2
3 4
 
Sample Output
Case #1: 14
 
Source

题意:(1,1)到(n,m)向右向下的最小方差路径

把方差的式子化简推理,得到
(n+m-1)*Σai^2-(Σai)^2   i belong path
注意两者平方位置演算时写清了
f[i][j][k]表示到(i,j)和为k的最小平方和,递推就行了
//
// main.cpp
// hdu5492
//
// Created by Candy on 10/2/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int T,n,m,l,a[N][N],f[N][N][N**];
int dp(){
memset(f,,sizeof(f));
f[][][a[][]]=a[][]*a[][];
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=l*;k++)
if(f[i][j][k]<=INF){
int x=i+,y=j,w=a[x][y];
f[x][y][k+w]=min(f[x][y][k+w],f[i][j][k]+w*w);
x=i;y=j+;w=a[x][y];
f[x][y][k+w]=min(f[x][y][k+w],f[i][j][k]+w*w);
}
int ans=INF;
for(int k=;k<=l*;k++)
if(f[n][m][k]<INF)
ans=min(ans,l*f[n][m][k]-k*k);
return ans;
}
int main(int argc, const char * argv[]) {
T=read();int cas=;
while(T--){
n=read();m=read();l=n+m-;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) a[i][j]=read();
printf("Case #%d: %d\n",++cas,dp());
} return ;
}
 

HDU5492 Find a path[DP 方差]的更多相关文章

  1. hdu-5492 Find a path(dp)

    题目链接: Find a path Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU - 5492 Find a path(方差公式+dp)

    Find a path Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each ...

  3. POJ 2373 Dividing the Path(DP + 单调队列)

    POJ 2373 Dividing the Path 描述 农夫约翰的牛发现,在他的田里沿着山脊生长的三叶草是特别好的.为了给三叶草浇水,农夫约翰在山脊上安装了喷水器. 为了使安装更容易,每个喷头必须 ...

  4. [HDU5492]Find a path

    题目大意: 一个n*m的格子,每个格子上都有一个数. 你可以向下或者向右走,从(1,1)走到(n,m),问方差*(n+m-1)最小的路径是哪个? 思路: 方差*(n+m-1)就相当于给格子里每个数乘上 ...

  5. CodeForces 407B Long Path (DP)

    题目链接 题意:一共n+1个房间,一个人从1走到n+1,如果第奇数次走到房间i,会退回到房间Pi,如果偶数次走到房间i,则走到房间i+1,问走到n+1需要多少步,结果对1e9+7取模. 题解:设dp[ ...

  6. hdu_2224_The shortest path(dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2224 题意:双调欧几里德旅行商经典问题,找一条最短回路使得该路经过所有的点 题解:dp[i][j]=d ...

  7. Codeforces 408D Long Path (DP)

    题目: One day, little Vasya found himself in a maze consisting of (n + 1) rooms, numbered from 1 to (n ...

  8. NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论

    http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...

  9. Educational Codeforces Round 17 D. Maximum path DP

    题目链接:http://codeforces.com/contest/762/problem/D 多多分析状态:这个很明了 #include<bits/stdc++.h> using na ...

随机推荐

  1. Python的下载与安装

    linux系统由于自身的需要,自带了Python,而Windows的系统就没有自带Python.本篇Blog介绍在win8.1下,安装Pathon需要注意的问题,包括常见的0x80240017.250 ...

  2. [deviceone开发]-do_Socket组件示例

    一.简介 do_Socket只实现了socket的客户端的功能,这个示例完整了展示了组件的基本用法,需要和sockettest3工具配合使用,sockettest3做为一个socket server来 ...

  3. html5学习笔记:canvas

    1.什么是canvas? 可以绘制图形的标签.一般用javascript来绘制. 2.创建一个画布 <!DOCTYPE html> <html> <head> &l ...

  4. android加固系列—5.加固前先学会破解,hook(钩子)jni层系统api

    [版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5138585.html] crackme项目jni的关键代码(项目地址见文章底部),获取当前程序 ...

  5. Android 6 检查权限代码

    private static final int MY_PERMISSIONS_REQUEST_READ_CONTACTS= 0; //检查目前是否有权限 if (checkSelfPermissio ...

  6. 你真的了解UIApplication吗?

    一:首先查看一下关于UIApplication的定义 NS_CLASS_AVAILABLE_IOS(2_0) @interface UIApplication : UIResponder //获得单例 ...

  7. GCD同步异步 串行并行大解析

    /** 核心概念 任务:block里需要执行的操作 队列:把任务添加进入队列中,按照先进先出的原则来执行任务  串行队列:一个一个的执行 并行队列:可以让多个任务并发(同时)执行(自动开启多个线程同时 ...

  8. 【Android】保存Fragment切换状态

    前言 一般频繁切换Fragment会导致频繁的释放和创建,如果Fragment比较臃肿体验就非常不好了,这里分享一个方法. 声明 欢迎转载,但请保留文章原始出处:)  博客园:http://www.c ...

  9. UIPickerView简单应用

    下面是一些效果图 下面是代码.有些枯燥 , 其实并不难 . #import <UIKit/UIKit.h> @interface ViewController : UIViewContro ...

  10. iOS做新浪微博sso授权登录遇到的一些坑

    新浪微博sso授权第三方登录,这里没有借助第三方框架,如shareSKD和友盟等,直接参考新浪官方SDK和文档. 过程中遇到几个坑,找了很久,好歹最后解决了,记录如下 问题1: _NSInlineDa ...