[ACM_动态规划] 嵌套矩形
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 1000+5 class Rect{
public:
int length;
int width;
};
bool ok(Rect& a,Rect& b){ //嵌套关系判定函数
return (a.length<b.length && a.width<b.width)
||(a.length<b.width && a.width<b.length);
} int d[maxn],n,map[maxn][maxn]; //d[]用来存储以i结尾的最大长度,map[i][j]表示i可嵌套在j中
Rect rect[maxn]; int dfs(int cur) //深搜,记忆化搜索
{
if( d[cur] > ) return d[cur];//已经找过的直接输出
d[cur] = ; //没找的先付初值1,然后深搜寻找
for(int i=;i<=n;i++)
{
if( map[cur][i] && d[cur] < dfs(i)+)
{
d[cur] = dfs(i)+;
}
}
return d[cur];
}
void out(int i) //反向追踪找到选取图形的标号
{
cout << i << " ";
for(int j=;j<=n;j++)
{
if( map[i][j] && d[i] == d[j]+)
{
out(j);
break;
}
}
} int main(){ for(;cin>>n && n;){ int i,j; for(i=;i<=n;i++){ //输入
cin>>rect[i].length>>rect[i].width;
} memset(map,,sizeof(map)); //构造一个嵌套关系的邻接矩阵
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(ok(rect[i],rect[j]))
map[i][j]=; memset(d,,sizeof(d)); //深搜记忆化完成d[]表
for(i=;i<=n;i++){
dfs(i);
} int max=,ds; //找出d[]的最大值并用ds存储尾链位置
for(i=;i<=n;i++){
if(max<d[i]){
max=d[i];
ds=i;
}
} cout<<max<<'\n';
out(ds);cout<<'\n';
}
}
[ACM_动态规划] 嵌套矩形的更多相关文章
- DAG上的动态规划---嵌套矩形(模板题)
一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)
CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...
- 【动态规划】矩形嵌套 (DGA上的动态规划)
[动态规划]矩形嵌套 时间限制: 1 Sec 内存限制: 128 MB提交: 23 解决: 9[提交][状态][讨论版] 题目描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a, ...
- HDOJ-1069(动态规划+排序+嵌套矩形问题)
Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...
- NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索
矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...
- P1375 嵌套矩形
题目Problem 嵌套矩形 Time Limit: 1000ms Memory Limit: 131072KB 描述Descript. 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形 ...
- 嵌套矩形——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...
- 02_嵌套矩形(DAG最长路问题)
来源:刘汝佳<算法竞赛入门经典--训练指南> P60 问题2: 问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它们的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件 ...
随机推荐
- win7 64的系统安装。net4.0总是提示安装未成功
主要原因是Windows update的临时文件损坏,建议重命名该文件夹. 1. 开始——运行——cmd——键入net stop WuAuServ回车(停止windows update服务): 2. ...
- Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduce ...
- R语言读取excel文件的3种方法
R读取excel文件中数据的方法: 电脑有一个excel文件,原始的文件路径是:E:\R workshop\mydata\biom excel数据为5乘2阶矩阵,元素为 ...
- JS-身份证号获取出生日期、性别、年龄
var cardId=$("#cardId").val();//先获取身份证号(据自己实际写法获取) 1.获取出生日期: function getBirth(cardId){ va ...
- 探 寻 宝 藏--- DP
题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角.当然,迷宫中的通路不是平坦 ...
- [转] 利用SET STATISTICS IO和SET STATISTICS TIME 优化SQL Server查询性能
首先需要说明的是这篇文章的内容并不是如何调节SQL Server查询性能的(有关这方面的内容能写一本书),而是如何在SQL Server查询性能的调节中利用SET STATISTICS IO和SET ...
- makefile命令基本运用(一)
一.makefile介绍: 一个工程中的源文件不计其数,其按类型.功能.模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译 ...
- shell编写mysql备份工具
如需转载,请经本人同意. 这是之前写的一个备份脚本,调用的备份工具是xtrabackup 编写思路是:每周一全备份,备份后提取lSN号,对备份文件进行压缩,其余时候在LSN的基础上进行增量备份,并对3 ...
- 关于selenium截图
没时间深入研究源代码,凭调试解决了非浏览器级别的滚动条截图. 首先,定位到带有滚动条的元素,通过xpath. 其次,获取scrollheight和clientheight. 第三,循环截图,循环截图的 ...
- c#实现房贷计算的方法源码
public void ProcessRequest(HttpContext context) { context.Response.ContentType = "application/j ...