思路:

这个

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

可以想成:

a(n)  】  【1 0 1】 【a(n-1)   】

a(n-1) 】 =   【1 0 0】 * 【a(n-2)  】

a(n-2) 】   【0 1 0】 【a(n-3)   】

然后就是利用矩阵快速幂去算中间那个矩阵的n次结果

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
typedef long long ll;
const int lg= 1e9+;
const int maxn = ;
struct node {
ll m[maxn][maxn];
}ans,res; node Mul(node a,node b,ll n)
{
node tmp;
memset(tmp.m,,sizeof(tmp));
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
for(int k=; k<=n; k++)
tmp.m[i][j] = (tmp.m[i][j]+a.m[i][k]*b.m[k][j]%lg)%lg;
}
}
return tmp;
}
void jzksm(ll n,ll k)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
if(i==j)ans.m[i][j] = ;
else ans.m[i][j] = ;
}
}
while(k)
{
if(k&)ans = Mul(ans,res,n);
res = Mul(res,res,n);
k>>=;
}
}
int main(){
int t,n;
scanf("%d", &t);
while(t--)
{ scanf("%d", &n);
memset(res.m,,sizeof(res.m));
res.m[][] = res.m[][] = res.m[][] = res.m[][] = ;
jzksm(,n);
printf("%lld\n",ans.m[][]%lg); }
return ;
}

洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂的更多相关文章

  1. 洛谷 P1045 【麦森数】快速幂

    不用快速幂,压位出奇迹! 本人是个蒟蒻,不太熟悉快速幂,这里给大家介绍一种压位大法. 让我们来分析一下题目,第一位是送分的,有一个专门求位数的函数:n*log10(2)+1. 然后题目中p<=3 ...

  2. 洛谷P5151 HKE与他的小朋友 快速幂/图论+倍增

    正解:矩阵快速幂/tarjan+倍增 解题报告: 传送门! 跟着神仙做神仙题系列III 这题首先一看到就会想到快速幂趴?就会jio得,哦也不是很难哦 然而,看下数据范围,,,1×105,,,显然开不下 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

  5. 洛谷 P1939 【模板】矩阵加速(数列) 解题报告

    P1939 [模板]矩阵加速(数列) 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值 ...

  6. [洛谷P1939]【模板】矩阵加速(数列)

    题目大意:给你一个数列a,规定$a[1]=a[2]=a[3]=1$,$a[i]=a[i-1]+a[i-3](i>3)$求$a[n]\ mod\ 10^9+7$的值. 解题思路:这题看似是很简单的 ...

  7. 【洛谷P1939】 矩阵加速模板

    https://www.luogu.org/problemnew/show/P1939 矩阵快速幂 斐波那契数列 首先看一下斐波那契数列的矩阵快速幂求法: 有一个矩阵1*2的矩阵|f[n-2],f[n ...

  8. 洛谷 P1939 矩阵加速(数列)

    题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...

  9. 洛谷 [P1939] 矩阵加速数列

    矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...

随机推荐

  1. element el-table resetfields() 不生效

    表单中的重置按钮不生效的问题,结合文档对照后,发现是没有为el-form-item设置prop字段 所以,想让resetfields()生效有2个前提: form要设置ref,且ref值要与 this ...

  2. 对Rust所有权、借用及生命周期的理解

    Rust的内存管理中涉及所有权.借用与生命周期这三个概念,下面是个人的一点粗浅理解. 一.从内存安全的角度理解Rust中的所有权.借用.生命周期 要理解这三个概念,你首要想的是这么做的出发点是什么-- ...

  3. MySQL5.7运行CPU达百分之400处理方案

    用户在使用 MySQL 实例时,会遇到 CPU 使用率过高甚至达到 100% 的情况.本文将介绍造成该状况的常见原因以及解决方法,并通过 CPU 使用率为 100% 的典型场景,来分析引起该状况的原因 ...

  4. 使用request获取访问者的真实IP

    在JSP里,获取客户端的IP地址的方法是:request.getRemoteAddr(),这种方法在大部分情况下都是有效的.但是在通过了Apache,Squid等反向代理软件就不能获取到客户端的真实I ...

  5. RabbitMQ(四):使用Docker构建RabbitMQ高可用负载均衡集群

    本文使用Docker搭建RabbitMQ集群,然后使用HAProxy做负载均衡,最后使用KeepAlived实现集群高可用,从而搭建起来一个完成了RabbitMQ高可用负载均衡集群.受限于自身条件,本 ...

  6. Netty源码分析-- FastThreadLocal分析(十)

    上节讲过了ThreadLocal的源码,这一节我们来看下FastThreadLocal.这个我觉得要比ThreadLocal要简单,因为缺少了对于Entry的清理和整理工作,所以ThreadLocal ...

  7. Unity经典游戏教程之:是男人就下100层

    版权声明: 本文原创发布于博客园"优梦创客"的博客空间(网址:http://www.cnblogs.com/raymondking123/)以及微信公众号"优梦创客&qu ...

  8. 4如何用PHP给MySQL数据库添加记录

    首先连接数据库(依旧用第二篇的方法) 假设数据库表里只有id,name,email三列 添加以下代码 $inputemail=写你要的email;$inputname=写你要的name;//先设定你要 ...

  9. Java Web基础面试题整理

    Tomcat的缺省端口是多少,怎么修改 tomcat默认缺省端口是8080 修改方法: 找到Tomcat目录下的conf文件夹 进入conf文件夹里面找到server.xml文件 打开server.x ...

  10. RE最全面的正则表达式----终结篇 特殊处理

    三.特殊需求表达式 Email地址:^w+([-+.]w+)*@w+([-.]w+)*.w+([-.]w+)*$域名:[a-zA-Z0-9][-a-zA-Z0-9]{0,62}(/.[a-zA-Z0- ...