Codeforces 735D Taxes(简单数论)
题目链接 http://codeforces.com/problemset/problem/735/D
题意:一个人的收入为n他要交的税是n的最大除数,他为了少缴税将n分成k个数n1,n2,n2....nk(k可以为1)所交的税就n1~nk的所有最大约数的和
一道简单的数论题,首先当n为质数是不用分税为1最小,当n为合数是,n为偶数是根据哥德巴赫猜想任意大于2的偶数可以拆成两个质数的和所以最小为
2,n为奇数时由于奇数只能由偶数和奇数组成所以奇数如果拆掉一个2(最小的偶数)剩下的是质数那么n的税就为2,如果不是那么就小就为3.
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std; int main() {
int n;
cin >> n;
int flag = 0;
for(int i = 2 ; i <= sqrt(n) ; i++) {
if(n % i == 0) {
flag = 1;
break;
}
}
if(flag == 0) {
cout << 1 << endl;
}
else {
if(n % 2 == 0) {
cout << 2 << endl;
}
else {
int gg = n - 2;
int temp = 0;
for(int i = 2 ; i <= sqrt(gg) ; i++) {
if(gg % i == 0) {
temp = 1;
break;
}
}
if(temp)
cout << 3 << endl;
else
cout << 2 << endl;
}
}
return 0;
}
Codeforces 735D Taxes(简单数论)的更多相关文章
- codeforces 735D Taxes(数论)
Maximal GCD 题目链接:http://codeforces.com/problemset/problem/735/D ——每天在线,欢迎留言谈论. 题目大意: 给你一个n(2≤n≤2e9) ...
- CodeForces - 735D Taxes (哥德巴赫猜想)
Taxes time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...
- CodeForces 735D Taxes
哥德巴赫猜想. 如果$n$是素数,答案为$1$. 如果$n$不是素数,但$n$是偶数,由哥德巴赫猜想可知答案为$2$. 如果$n$不是素数,且$n$为奇数,此时可以将$n$拆成$3+$偶数或者$2+$ ...
- CodeForces - 573A (简单数论+模拟)
题意 https://vjudge.net/problem/CodeForces-573A 有n个数ai ,你可以把每个数任意次×2 或×3 ,问能否最终使得每个数相等. 思路 x2和x3只能改变数 ...
- [CodeForces - 1225C]p-binary 【数论】【二进制】
[CodeForces - 1225C]p-binary [数论][二进制] 标签: 题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory limit 5 ...
- (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)
题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...
- 简单数论之整除&质因数分解&唯一分解定理
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...
- 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)
传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod  nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
随机推荐
- python多线程详解
目录 python多线程详解 一.线程介绍 什么是线程 为什么要使用多线程 二.线程实现 threading模块 自定义线程 守护线程 主线程等待子线程结束 多线程共享全局变量 互斥锁 递归锁 信号量 ...
- 传输层的TCP和UDP协议
作者:HerryLo 原文永久链接: https://github.com/AttemptWeb... TCP/IP协议, 你一定常常听到,其中TCP(Transmission Control Pro ...
- jenkins未授权访问漏洞
jenkins未授权访问漏洞 一.漏洞描述 未授权访问管理控制台,可以通过脚本命令行执行系统命令.通过该漏洞,可以后台管理服务,通过脚本命令行功能执行系统命令,如反弹shell,wget写webshe ...
- 前端笔记之React(八)上传&图片裁切
一.上传 formidable天生可以处理上传的文件,非常简单就能持久上传的文件. 今天主要讲解的是,前后端的配合套路. 上传分为同步.异步.同步公司使用非常多,异步我们也会讲解. 1.1 先看一下a ...
- 7、数组中添加元素(test5.java)
前文提到了系统函数,arraycopy(),这是一个强大的函数,根据它的特性便可以看出由于他的特殊性质,加以利用的话,就在数组中添加元素,但这样的方式会造成的结果就是,添加n个元素,那么原数组中倒数n ...
- MyBatis 二级缓存全详解
目录 MyBatis 二级缓存介绍 二级缓存开启条件 探究二级缓存 二级缓存失效的条件 第一次SqlSession 未提交 更新对二级缓存影响 探究多表操作对二级缓存的影响 二级缓存源码解析 二级缓存 ...
- Logback配置文件这么写,TPS提高10倍
通过阅读本篇文章将了解到 1.日志输出到文件并根据LEVEL级别将日志分类保存到不同文件 2.通过异步输出日志减少磁盘IO提高性能 3.异步输出日志的原理 配置文件logback-spring.xml ...
- GoAccess 分析 Nginx 日志
0x00 事件 帮助朋友搭建了博客,运行过了一段时间,准备发个网站分析报告给他. 有效的数据只有 Nginx 的访问日志,于是使用决定 GoAccess 工具对这个日志进行分析, 0x01 安装 吾使 ...
- Hive安装与部署
进去root权限(su) 1.从https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-1.2.2/apache-hive-1.2.2-bin.ta ...
- Elasticsearch由浅入深(一)
什么是Elasticsearch 什么是搜索 百度:我们比如说想找寻任何的信息的时候,就会上百度去搜索一下,比如说找一部自己喜欢的电影,或者说找一本喜欢的书,或者找一条感兴趣的新闻(提到搜索的第一印象 ...