题目链接 http://codeforces.com/problemset/problem/735/D

题意:一个人的收入为n他要交的税是n的最大除数,他为了少缴税将n分成k个数n1,n2,n2....nk(k可以为1)所交的税就n1~nk的所有最大约数的和

一道简单的数论题,首先当n为质数是不用分税为1最小,当n为合数是,n为偶数是根据哥德巴赫猜想任意大于2的偶数可以拆成两个质数的和所以最小为

2,n为奇数时由于奇数只能由偶数和奇数组成所以奇数如果拆掉一个2(最小的偶数)剩下的是质数那么n的税就为2,如果不是那么就小就为3.

#include <iostream>
#include <cstring>
#include <cmath>
using namespace std; int main() {
int n;
cin >> n;
int flag = 0;
for(int i = 2 ; i <= sqrt(n) ; i++) {
if(n % i == 0) {
flag = 1;
break;
}
}
if(flag == 0) {
cout << 1 << endl;
}
else {
if(n % 2 == 0) {
cout << 2 << endl;
}
else {
int gg = n - 2;
int temp = 0;
for(int i = 2 ; i <= sqrt(gg) ; i++) {
if(gg % i == 0) {
temp = 1;
break;
}
}
if(temp)
cout << 3 << endl;
else
cout << 2 << endl;
}
}
return 0;
}

Codeforces 735D Taxes(简单数论)的更多相关文章

  1. codeforces 735D Taxes(数论)

    Maximal GCD 题目链接:http://codeforces.com/problemset/problem/735/D ——每天在线,欢迎留言谈论. 题目大意: 给你一个n(2≤n≤2e9) ...

  2. CodeForces - 735D Taxes (哥德巴赫猜想)

    Taxes time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  3. CodeForces 735D Taxes

    哥德巴赫猜想. 如果$n$是素数,答案为$1$. 如果$n$不是素数,但$n$是偶数,由哥德巴赫猜想可知答案为$2$. 如果$n$不是素数,且$n$为奇数,此时可以将$n$拆成$3+$偶数或者$2+$ ...

  4. CodeForces - 573A (简单数论+模拟)

    题意 https://vjudge.net/problem/CodeForces-573A 有n个数ai​ ,你可以把每个数任意次×2 或×3 ,问能否最终使得每个数相等. 思路 x2和x3只能改变数 ...

  5. [CodeForces - 1225C]p-binary 【数论】【二进制】

    [CodeForces - 1225C]p-binary [数论][二进制] 标签: 题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory limit 5 ...

  6. (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)

    题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...

  7. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  8. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  9. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

随机推荐

  1. Android UI绘制流程及原理

    一.绘制流程源码路径 1.Activity加载ViewRootImpl ActivityThread.handleResumeActivity() --> WindowManagerImpl.a ...

  2. .NET中的值类型与引用类型

    .NET中的值类型与引用类型 这是一个常见面试题,值类型(Value Type)和引用类型(Reference Type)有什么区别?他们性能方面有什么区别? TL;DR(先看结论) 值类型 引用类型 ...

  3. 使用Arthas 获取Spring ApplicationContext还原问题现场

    ## 背景 最近来了个实习僧小弟,安排他实现对目标网站 连通性检测的小功能,简单讲就是将下边的shell 脚本换成Java 代码来实现 ``` 1#!/bin/bash 2URL="http ...

  4. PythonDay04

    ## 第四章 ### 今日内容 - 列表- 元组- range ### 列表 列表相比于字符串,不仅可以储存不同的数据类型,而且可以储存大量数据,是一种可变的数据类型 64位python的限制是 11 ...

  5. 转载 | 一种让超大banner图片不拉伸、全屏宽、居中显示的方法

    现在很多网站的Banner图片都是全屏宽度的,这样的网站看起来显得很大气.这种Banner一般都是做一张很大的图片,然后在不同分辨率下都是显示图片的中间部分.实现方法如下: <html> ...

  6. 用 bat 文件实现 excel 周报复制

     又要写周报???? 写周报就算了每次都要改这一大堆的日期,什么鬼嘛,最骚的我还总是有的忘记改....        作为一个正儿八经的程序员,固定每周某天干重复的一件事,哦~~  这是机器人 程序应 ...

  7. Jersey用户指南学习笔记1

    Jersey用户指南是Jersey的官方文档, 英文原版在这:https://jersey.github.io/documentation/latest/index.html 中文翻译版在这:http ...

  8. powerdesign进军(二)--oracle数据源配置

    目录 资源下载(oracle客户端) 配置 查看系统的数据源 powerdesign 连接数据库 title: powerdesign进军(二)--oracle数据源配置 date: 2019-05- ...

  9. 给你的SpringBoot做埋点监控--JVM应用度量框架Micrometer

    JVM应用度量框架Micrometer实战 前提 spring-actuator做度量统计收集,使用Prometheus(普罗米修斯)进行数据收集,Grafana(增强ui)进行数据展示,用于监控生成 ...

  10. studio无限轮播

    <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android=&q ...