题目描述

Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。

Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.

每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。

When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow Gathering.

在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。

Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.

1 3 4 5

@—1—@—3—@—3—@[2]

[1] |

2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:

Gather ——- Inconvenience ———

Location B1 B2 B3 B4 B5 Total

1 0 3 0 0 14 17

2 3 0 0 0 16 19

3 1 2 0 0 12 15

4 4 5 0 0 6 15

5 7 8 0 0 0 15

If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:

Barn 1 0 — no travel time there!

Barn 2 3 — total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 — no cows there!

Barn 4 0 — no cows there!

Barn 5 14 — total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.

The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.

输入输出格式

输入格式:

  • Line 1: A single integer: N

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i

第一行:一个整数 N 。

第二到 N+1 行:第 i+1 行有一个整数 C_i

第 N+2 行到 2*N 行:第 i+N+1 行为 3 个整数:A_i,B_i 和 L_i。

输出格式:

  • Line 1: The minimum inconvenience possible

第一行:一个值,表示最小的不方便值。

输入输出样例

输入样例#1: 复制

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

输出样例#1: 复制

15

思路

树型dp
Luogu p3478 [POI2008]STA-Station (简化版)

  • 同样是先算出以1为聚会点时的答案,再通过递推求得其儿子节点的答案,在由其儿子节点的答案推得再下一层的子节点答案…….

① 假设所有的牛以1为聚会点,求出此时的答案

② 当以3为聚会点时,3号节点以及他子树上的节点都需要退回1->3的路径的长度

除了3号节点以及他子树上的节点都需要前进1->3的路径的长度

得到递推式$f[v]=f[u]-q[v]*dis+(sum-q[v])*dis$ 其中q[i]表示节点i上的牛的数量

代码

#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 200100
#define ll long long
#define re register int
using namespace std;
inline ll read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
ll dis[maxn],c[maxn],q[maxn],f[maxn],sum; //q[]子树上的节点总数
ll Ans=2147483647;
struct data {
ll v,next,w;
}e[maxn]; ll h[maxn],tot=1,n;
inline void Add(ll u,ll v,ll w) {
e[tot].v=v;
e[tot].next=h[u];
e[tot].w=w;
h[u]=tot++;
}
ll DFS(ll u,ll fa) {
ll tot=0;
for(register ll i=h[u];i;i=e[i].next) {
ll v=e[i].v;
if(v!=fa) {
ll s=DFS(v,u);
dis[u]+=dis[v]+e[i].w*s;
tot+=s;
}
}
return q[u]=tot+c[u];
} void dfs(ll u,ll fa) {
for(register ll i=h[u];i;i=e[i].next) {
ll v=e[i].v;
if(v!=fa) {
ll tmp=e[i].w;
f[v]=f[u]-q[v]*tmp+(sum-q[v])*tmp; //f[]表示从1为根节点到v为根节点需要变化的步数
dfs(v,u);
}
}
} int main(){
n=read();
for(register ll i=1;i<=n;++i) c[i]=read();
for(register ll i=1;i<=n;++i) sum+=c[i];
for(register ll i=1;i<n;++i) {
ll u=read(),v=read(),w=read();
Add(u,v,w);
Add(v,u,w);
}
DFS(1,1);
dfs(1,1);
for(register ll i=1;i<=n;++i) Ans=min(Ans,f[i]);
cout<<Ans+dis[1]<<endl;
return 0;
}

【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp的更多相关文章

  1. LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...

  2. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  3. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...

  5. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925

    题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...

  6. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  7. [USACO10MAR]伟大的奶牛聚集Great Cow Gat… ($dfs$,树的遍历)

    题目链接 Solution 辣鸡题...因为一个函数名看了我贼久. 思路很简单,可以先随便指定一个根,然后考虑换根的变化. 每一次把根从 \(x\) 换成 \(x\) 的一个子节点 \(y\),记录一 ...

  8. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. 【Redis】启动redis提示Could not connect to Redis at 127.0.0.1:6379: Connection refused 已解决

    1.配置redis.conf文件,将daemonize no 为 daemonize yes即可(让redis作为守护进程运行)

  2. 阿里面试官用HashMap把我问倒了

    本人是一名大三学生,最近在找暑期实习,其中也面试过两次阿里,一次菜鸟网络部门.一次网商银行部门,当然我都失败了,同时也让我印象很深刻,因此记录了其中一些面试心得,我觉得这个问题很值得分享,因此分享给大 ...

  3. v-on精炼

    v-on的介绍 在Vue中,常使用v-on指令用于监听事件的发生,v-on指令就类似于JavaScript中的addEvelistener()方法 v-on的基本使用 <div id=" ...

  4. 设了padding要减去盒高 和 line-height 行高

    增加了padding 一定要减去相应的高度,不然整个元素的高度会增高(原高+padding) line-height:行高 1.行高要比字体大,不然字体会挤到一块去 2.若父盒子没有设置高度,则行高会 ...

  5. mysql整型后面的()宽度

    int(5)这个5表示显示宽度 如果超出宽度则正常显示,所以人为指定显示宽度意义不大

  6. (五)Jira Api对接:修改任务状态

    项目迭代结束后我们需要把sprint下面的story.task任务状态修改到结束状态,如果手动修改会花费不少时间,本文就介绍如何通过jira api自动修改任务状态,提高工作效率. 一.查看任务工作流 ...

  7. CentOS/Linux内存占用大,用Shell脚本自动定时清除/释放内存

    CentOS/Linux内存占用大,用Shell脚本自动定时清除/释放内存来自:互联网 时间:2020-03-22 阅读:114以下情况可能造成Linux内存占用过高服务配置存在直接分配错误,或隐性分 ...

  8. 选择“保留window设置、个人文件及应用”或者“升级安装windows并保留文件设置和应用程序”的 处理干净以后用ghost备份

    个人经验 第一次装好以后 把所有常用软件什么的 还有系统的更新全部装好 删去乱七八糟的临时文件啊什么的 处理干净以后用ghost备份下次需要重装直接从ghost镜像恢复 然后更新软件 打补丁 再备份 ...

  9. Zabbix 自定义report

    #!/bin/bash . /etc/profile logdir='/home/admin/zabbix/zabbix_log' mysql_host='localhost' mysql_user= ...

  10. Linux_rpm包管理

    一.rpm包命令规范 1.包的组成 主包:bind-9.7.1-1.el5.i586.rpm 子包:bind-libs-9.7.1-1.el5.i586.rpm bind-utils-9.7.1-1. ...