TensorFlowMNIST数据集逻辑回归处理
TensorFlow逻辑回归处理MNIST数据集
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集。
大部分人已经对 MNIST 数据集很熟悉了,它是机器学习的基础,包含手写数字的图像及其标签来说明它是哪个数字。
对于逻辑回归,对输出 y 使用独热(one-hot)编码。因此,有 10 位表示输出,每位的值为 1 或 0,独热意味着对于每个图片的标签 y,10 位中仅有一位的值为 1,其余的为 0。
因此,对于手写数字 8 的图像,其编码值为 [0000000010]:

具体做法
- 导入所需的模块:

- 可以从模块 input_data 给出的 TensorFlow 示例中获取 MNIST 的输入数据。该 one_hot 标志设置为真,以使用标签的 one_hot 编码。这产生了两个张量,大小为 [55000,784] 的 mnist.train.images 和大小为 [55000,10] 的 mnist.train.labels。mnist.train.images 的每项都是一个范围介于 0 到 1 的像素强度:

- 在 TensorFlow 图中为训练数据集的输入 x 和标签 y 创建占位符:

- 创建学习变量、权重和偏置:

- 创建逻辑回归模型。TensorFlow OP 给出了 name_scope("wx_b"):

- 训练时添加 summary 操作来收集数据。使用直方图以便看到权重和偏置随时间相对于彼此值的变化关系。可以通过 TensorBoard Histogtam 选项卡看到:

- 定义交叉熵(cross-entropy)和损失(loss)函数,并添加 name scope 和 summary 以实现更好的可视化。使用 scalar summary 来获得随时间变化的损失函数。scalar summary
在 Events 选项卡下可见:

- 采用 TensorFlow GradientDescentOptimizer,学习率为
0.01。为了更好地可视化,定义一个 name_scope:

- 为变量进行初始化:

- 组合所有的 summary 操作:

- 现在,可以定义会话并将所有的 summary 存储在定义的文件夹中:

- 经过 30 个周期,准确率达到了 86.5%;经过 50 个周期,准确率达到了 89.36%;经过 100 个周期,准确率提高到了 90.91 %。
解读分析
这里使用张量
tensorboard--logdir=garphs 运行 TensorBoard。在浏览器中,导航到网址 localhost:6006 查看
TensorBoard。该模型图如下:

在 Histogram 选项卡下,可以看到权重(weights)和偏置(biases)的直方图:

权重和偏置的分布如下:

可以看到,随着时间的推移,偏置和权重都发生了变化。在该示例中,根据 TensorBoard 中的分布可知偏置变化的范围更大。在 Events 选项卡下,可以看到 scalar summary,即本示例中的交叉熵。下图显示交叉熵损失随时间不断减少:

TensorFlowMNIST数据集逻辑回归处理的更多相关文章
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- 用Python开始机器学习(7:逻辑回归分类) --好!!
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 机器学习之逻辑回归(Logistic Regression)
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值.我们会使用逻辑回归算法来解决分类问题. 之 ...
随机推荐
- http文件下载与404
# http文件下载与404 if (!file_exists($file_path)) { header('HTTP/1.1 404 Not Found'); header("status ...
- vim 中文乱码解决
问题如下: 在vim中编辑一个中文文本时 出现中文乱码情况 问题解决: 修改vimrc的脚本配置 编辑~/.vimrc文件,加上如下几行即可: set fileencodings=utf-8,ucs- ...
- 【Java】说说你对ThreadLocal的理解
思路: 0.ThreadLocal是什么?有什么用? 1.ThreadLocal用在什么地方? 2.ThreadLocal的一些细节 3.ThreadLocal的最佳实践 一.ThreadLocal用 ...
- 手动脱ORiEN壳实战
作者:Fly2015 ORiEN这种壳之前没有接触,到底是压缩壳还是加密壳也不知道,只能试一试喽.需要脱壳的程序是吾爱破解脱壳练习第7期的题目. 首先对加壳程序进行查壳,这一步也是程序脱壳的必要的一步 ...
- Android常见App加固厂商脱壳方法的整理
目录 简述(脱壳前学习的知识.壳的历史.脱壳方法) 第一代壳 第二代壳 第三代壳 第N代壳 简述 Apk文件结构 Dex文件结构 壳史 壳的识别 Apk文件结构 Dex文件结构 壳史 第一代壳 Dex ...
- Intel汇编语言程序设计学习-第六章 条件处理-上
条件处理 本章要点 1.简介 2.布尔和比较指令 3.条件跳转 4.条件循环指令 5.条件结构 6.应用:有限状态机 7.决策伪指令 6.1 简介 本章,读者将看到高级条件分支如何翻译成底层的实现代 ...
- Spring JPA使用CriteriaBuilder动态构造查询
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://www.cnblogs.com/mzdljgz/p/11495723. ...
- 基于RRCF(robust random cut forest)的时间序列异常检测流程
摘要:RRCF是亚马逊提出的一个流式异常检测算法,是对孤立森林的改进,可对时序或非时序数据进行异常检测.本文是我从事AIOps研发工作时所做的基于RRCF的时序异常检测方案. 1. 数据格式 ...
- 用户对象/GDI对象/内核对象
对象的分类 Windows的对象可以分为三种,分别是用户对象,GDI对象和内核对象.系统使用用户对象支持窗口管理,使用GDI对象支持图形,并使用内核对象支持内存管理,进程执行和进程间通信(IPC) . ...
- 问渠那得清如许?为有源头活水来——对【近取Key】产品进行的深度测评与解析
在 Build To Show 的场景中,大家各显身手,用各种办法展现技术,的确很难在单一的维度上确定谁赢谁输.但是,在 Build To Win 的场景中,往往市场就是那么一块, 竞争对手占了 70 ...