Windows内核中的CPU架构-7-陷阱门(32-Bit Trap Gate)

陷阱门和中断门几乎是一模一样的:

(注:图里高32位中的第11位的值为D,其实是1)

除了高32位中的type字段的内容不一样:

陷阱门的值为15,中断门的值为14。

陷阱门和中断门的区别:

陷阱门和中断门只有一个唯一的区别,其它的包括调用方式都是一模一样。

唯一区别:通过中断门进入中断服务程序时CPU会字段将中断关闭,也就是把CPU中EFLAG寄存器中的IF标志位复位,来防止嵌套中断的发生。而通过陷阱门进入中断服务程序时则维持IF标志位不变,这就是唯一区别。

其中有几个概念需要特殊说明,IF标志位,和中断的扩展内容。

中断

中断可分为,可屏蔽中断和不可屏蔽中断。

比如说:鼠标,键盘操作就是可屏蔽中断。

IF标志位:

EFLAG寄存器:

IF标志位对应的内容是中断使能标志,Interrupt flag。

当某一个中断请求发生时,中断控制器通过判断IF标志位的值来确定是否给CPU发生中断信号。

当IF为1时,可以响应可屏蔽中断请求,当IF为0时,就会禁止响应可屏蔽中断请求。

简单来说,就是Eflag寄存器中的IF标志位,来决定是否可以响应可屏蔽中断请求。

使用陷阱门:

这个和中断门一模一样,除了段描述符得改一改,我直接用之前的程序来配置了。

配置段描述符:

这里我就省略过程了。

段描述符值为:0040EF0000081080

保存在idt表内:

调用中断:

和中断门一模一样:

#include<iostream>
#include<Windows.h>
using namespace std;

void _declspec(naked) test()
{
_asm
{
push eax
mov eax,0x80b93040
mov eax,[eax]
pop eax
iretd
}
}

int main()
{
printf("%x\n", test);
_asm
{
int 0x20
}
system("pause");
return 0;
}

  

测试结果:

正常运行。

小结

陷阱门(trap gate)和中断门几乎一致,只是有能否屏蔽可屏蔽中断这个概念而已。

Windows内核中的CPU架构-7-陷阱门(32-Bit Trap Gate)的更多相关文章

  1. Windows内核中的CPU架构-6-中断门(32-Bit Interrupt Gate)

    Windows内核中的CPU架构-6-中断门(32-Bit Interrupt Gate) 中断门和调用门类似,也是一种系统段.同样的它也可以用来提权. 中断门: 虽然中断门的段描述符如下: 但是中断 ...

  2. Windows内核中的CPU架构-8-任务段TSS(task state segment)

    Windows内核中的CPU架构-8-任务段TSS(task state segment) 任务段tss(task state segment)是针对于CPU的一个概念. 举一个简单的例子,你一个电脑 ...

  3. 02全志r58平台Android4.4.4下关闭内核中的CPU的开启关闭提示

    02全志r58平台Android4.4.4下关闭内核中的CPU的开启关闭提示 2017/8/18 13:53 版本:V1.0 开发板:SC5806(全志R58平台) SDK:android4.4.4 ...

  4. Windows内核中的内存管理

    内存管理的要点 内核内存是在虚拟地址空间的高2GB位置,且由所有进程所共享,进程进行切换时改变的只是进程的用户分区的内存 驱动程序就像一个特殊的DLL,这个DLL被加载到内核的地址空间中,Driver ...

  5. 【windwos 操作系统】关键的Windows内核数据结构一览(上)

    文章作者:r00tk1t 发布时间:2018年01月08日 - 21时56分 最后更新:2020年10月20日 - 21时01分 原始链接:https://r00tk1ts.github.io/201 ...

  6. Windows内核 基本汇编指令

    1)用VS2010新建Win32 Console Application,工程名为ACECore,工程建立完成后得到打开文件ACECore.cpp,代码如下: #include "stdaf ...

  7. Windows环境下多线程编程原理与应用读书笔记(3)————Windows环境中的多线程实现(3)

    纤程 纤程(fiber): 相当于用户级别的线程或轻进程.纤程由Win32库函数支持,对核心是不可见的.纤程可以通过SwitchToFiber显示至另一合作纤程,以实现合作纤程之间的协同.线程是在Wi ...

  8. windows内核代码之进程操作

    [toc] 一丶简介 整理一下windows内核中.常用的代码.这里只整理下进程的相关代码. 二丶 windows内核之遍历进程 内核中记录进程的结构体是EPROCESS结构.所以只需要遍历这个结构即 ...

  9. Windows内核开发-6-内核机制 Kernel Mechanisms

    Windows内核开发-6-内核机制 Kernel Mechanisms 一部分Windows的内核机制对于驱动开发很有帮助,还有一部分对于内核理解和调试也很有帮助. Interrupt Reques ...

随机推荐

  1. whistle抓包-数据包分析

    额,这篇忘了是来自哪位作者的了. whistle:1.14.6 这里以抓取浏览器数据包为例,分析抓取的数据. Method:Connect,对应Host:Tunnel to意思是因为网络环境受限,客户 ...

  2. 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03

    百篇博客系列篇.本篇为: v28.xx 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当 ...

  3. Nresource服务之接口缓存化

    1. 背景 Nresource服务日均4.5亿流量,考虑到未来流量急增场景,我们打算对大流量接口进行缓存化处理:根据服务管理平台数据统计显示getUsableResoureCount接口调用量很大,接 ...

  4. iOS能否自动扫描周边wifi信息并通过密码连接

    能否获取系统wifi列表信息 不能,只能获取用户当前连接的wifi信息 https://developer.apple.com/forums/thread/112177 https://develop ...

  5. javascriptRemke之类的继承

    前言:es6之前在js中要实现继承,就必须要我们程序员在原型链上手动继承多对象的操作,但是结果往往存在漏洞,为解决这些问题,社区中出现了盗用构造函数.组合继承.原型式继承.寄生式继承等一系列继承方式, ...

  6. Python代码阅读(第21篇):将变量名称转换为蛇式命名风格

    Python 代码阅读合集介绍:为什么不推荐Python初学者直接看项目源码 本篇阅读的代码实现将变量名称转换为蛇式命名风格(snake case)的功能. 本篇阅读的代码片段来自于30-second ...

  7. vue2和vue3比较

    一.vue3新特性: 1.数据响应重新实现(ES6的proxy代替Es5的Object.defineProperty) 2.源码使用ts重写,更好的类型推导 3.虚拟DOM新算法(更快,更小) 4.提 ...

  8. 【UE4 C++】UGameplayStatics 源代码

    // Copyright Epic Games, Inc. All Rights Reserved. #pragma once #include "CoreMinimal.h" # ...

  9. 21.6.25 test

    \(NOI\) 模拟赛 \(T1\) 是树+位运算+dp+优化 打了 \(O(n^2)\) 的暴力dp,只拿到了35分,算了一下参赛的,人均65,中位数60.也能看出一些问题,对于一些模糊的猜测应该尝 ...

  10. DH密钥交换

    DH密钥交换 密模运算 所谓幂模,就是先做一次幂运算,再做一次模运算. 模运算有以下性质: 也就是说,先模再乘和先乘再模,只要最后都模了同一个模数,结果都是一样. 有了这个性质,我们首先得到幂模运算的 ...