带你理解MST性质
写在前面
最小生成树的引出
假设要在n个城市之间建立通信联络网,则连通n个城市需要n-1条线路。在这种情况下,我们自然需要考虑一个问题,如何在最节省经费的条件下建立这个网络?
很自然地我们会想到,将各个城市之间的线路开销转化为权重,要想找到最节省经费的方案,就需要找到能够连通所有城市且权重最小的连通线路。
因此,我们需要选择一颗生成树,使得该生成树总耗费最小,也就是用最小的代价构建这条连通网。我们称这样的网络为:最小代价生成树(简称:最小生成树)。
本文结构
本文从MST性质的定义和证明方面为读者解度最小生成树两个常见算法的前置理论性质。
普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法都是利用了MST性质的算法
建议读者在在理解了普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法之后再阅读此文
利用得到的最小生成树在回过头来理解MST会更加简单。
MST性质
MST性质的定义
假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。
若(u,v)是一条既有最小权值(代价)的边,其中u∈U,v∈V,则必存在一颗包含边(u,v)的最小生成树。
证明
证明方法
可以用反证法证明。假设网N的任何一颗最小生成树都不包含(u,v)。设T是连通网上的一颗最小生成树,当将边(u,v)加入到T中时,由生成树的定义,T中必存在一条包含(u,v)的回路。
另一方面,由于T是生成树,则在T上必存在另外一条(u',v'),其中u'∈U,v'∈V-U,且u与u',v与v'均有路径相通。
删去边(u',v')即可消除上述回路,同时得到另外一颗生成树T'。因为(u,v)的代价不高于(u'v'),则T'的代价亦不高于T,T'是一颗包含(u,v)的最小生成树。与假设假设矛盾。
举个例子
现在,给出一个连通图:
众所周知,这样一给连通网的最小生成树为:
那么可以按照如下方式对MST进行证明:
带你理解MST性质的更多相关文章
- 一个故事带你理解if __name__ == '__main__'
如果你刚刚接触python,相信会在看别人的程序的时候会遇到if __name__ == '__main__'酱紫的语法,如果当时没看懂现在也一知半解的话,看下去,本文可以帮你解决这个问题. 大家都知 ...
- JDK1.8源码逐字逐句带你理解LinkedHashMap底层
注意 我希望看这篇的文章的小伙伴如果没有了解过HashMap那么可以先看看我这篇文章:http://blog.csdn.net/u012403290/article/details/65442646, ...
- [转帖]从零开始入门 K8s | 手把手带你理解 etcd
从零开始入门 K8s | 手把手带你理解 etcd https://zhuanlan.zhihu.com/p/96721097 导读:etcd 是用于共享配置和服务发现的分布式.一致性的 KV 存储系 ...
- 手摸手带你理解Vue的Computed原理
前言 computed 在 Vue 中是很常用的属性配置,它能够随着依赖属性的变化而变化,为我们带来很大便利.那么本文就来带大家全面理解 computed 的内部原理以及工作流程. 在这之前,希望你能 ...
- 手摸手带你理解Vue的Watch原理
前言 watch 是由用户定义的数据监听,当监听的属性发生改变就会触发回调,这项配置在业务中是很常用.在面试时,也是必问知识点,一般会用作和 computed 进行比较. 那么本文就来带大家从源码理解 ...
- 转: 带你玩转Visual Studio——带你理解多字节编码与Unicode码
上一篇文章带你玩转Visual Studio——带你跳出坑爹的Runtime Library坑帮我们理解了Windows中的各种类型C/C++运行时库及它的来龙去脉,这是C++开发中特别容易误入歧途的 ...
- 手把手带你理解style
在写代码的时候,经常遇到自定义的style,有的用来设置属性,有的用来设置主题,搞的自己云里雾里,因此在心底暗暗发誓,等到空闲的时候,一定好好学学android中的style的究竟是个什么东西,到底有 ...
- 从底层带你理解Python中的一些内部机制
下面博文将带你创建一个字节码级别的追踪API以追踪Python的一些内部机制,比如类似YIELDVALUE.YIELDFROM操作码的实现,推式构造列表(List Comprehensions).生成 ...
- 带你玩转Visual Studio——带你理解多字节编码与Unicode码
目录(?)[-] 多字节字符与宽字节字符 char与wchar_t string与wstring string 与 wstring的相关转换 字符集Charcater Set与字符编码Encoding ...
随机推荐
- mybatis关系表
<select id="selectSingleQuestion" resultType="remarkPaper"> select FrontTi ...
- requests + 正则表达式 获取 ‘猫眼电影top100’。
使用 进程池Pool 提高爬取数据的速度. 1 # !/usr/bin/python 2 # -*- coding:utf-8 -*- 3 import requests 4 from request ...
- 2021“MINIEYE杯”中国大学生算法设计超级联赛(8)(1002,1004,1006,1009)
前言 依旧是白嫖账号,只打了一些题/kk 正题 1002 Buying Snacks 题目大意 \(n\)个物品,每个可以买一次也可以不买,如果买需要选择\(1/2\)块钱的,然后也可以相邻两个一起买 ...
- 浅析 Java 内存模型
文章转载于 飞天小牛肉 的 <「跬步千里」详解 Java 内存模型与原子性.可见性.有序性>.<JMM 最最最核心的概念:Happens-before 原则> 1. 为什么要学 ...
- C#开发BIMFACE系列45 服务端API之创建离线数据包
BIMFACE二次开发系列目录 [已更新最新开发文章,点击查看详细] BIMFACE的常规应用方式有公有云与私有化部署两种方式,并且浏览模型或者图纸需要使用ViewToken,ViewToke ...
- CF49E Common ancestor(dp+dp+dp)
纪念卡常把自己卡死的一次自闭模拟赛 QWQ 一开始看这个题,以为是个图论,仔细一想,貌似可以直接dp啊. 首先,因为规则只有从两个变为1个,貌似可以用类似区间\(dp\)的方式来\(check\)一段 ...
- 学习笔记——不带修序列莫队 (luogu2079)小B的询问
莫队是一种对于询问的离线算法 时间复杂度:O(\(n \sqrt n\)) 大致思想就是 首先将询问离线,然后对原序列分块,使得每一个\(l和r\)都在一个块里 然后按照左节点排序,若所在的块相等,就 ...
- 2020.10.9--vj个人赛补题
B - A Tide of Riverscape 题意:给出一组字符串,由'0','1',' . '组成,' . '可以换成 0或1,判断第 i 个和第 i+p 个字符是否可以不相等,如果可以则输出 ...
- Arthas 进阶教程
Arthas 进阶教程 启动math-game 下载demo-arthas-spring-boot.jar,再用java -jar命令启动: wget https://github.com/hengy ...
- 剑指offer:JZ12 矩阵中的路径
JZ12 矩阵中的路径 描述 请设计一个函数,用来判断在一个n乘m的矩阵中是否存在一条包含某长度为len的字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上, ...