写在前面

最小生成树的引出

假设要在n个城市之间建立通信联络网,则连通n个城市需要n-1条线路。在这种情况下,我们自然需要考虑一个问题,如何在最节省经费的条件下建立这个网络?

很自然地我们会想到,将各个城市之间的线路开销转化为权重,要想找到最节省经费的方案,就需要找到能够连通所有城市且权重最小的连通线路。

因此,我们需要选择一颗生成树,使得该生成树总耗费最小,也就是用最小的代价构建这条连通网。我们称这样的网络为:最小代价生成树(简称:最小生成树)

本文结构

本文从MST性质的定义和证明方面为读者解度最小生成树两个常见算法的前置理论性质。

普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法都是利用了MST性质的算法

建议读者在在理解了普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法之后再阅读此文

利用得到的最小生成树在回过头来理解MST会更加简单。

MST性质

MST性质的定义

假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。

若(u,v)是一条既有最小权值(代价)的边,其中u∈U,v∈V,则必存在一颗包含边(u,v)的最小生成树。

证明

证明方法

可以用反证法证明。假设网N的任何一颗最小生成树都不包含(u,v)。设T是连通网上的一颗最小生成树,当将边(u,v)加入到T中时,由生成树的定义,T中必存在一条包含(u,v)的回路。

另一方面,由于T是生成树,则在T上必存在另外一条(u',v'),其中u'∈U,v'∈V-U,且u与u',v与v'均有路径相通。

删去边(u',v')即可消除上述回路,同时得到另外一颗生成树T'。因为(u,v)的代价不高于(u'v'),则T'的代价亦不高于T,T'是一颗包含(u,v)的最小生成树。与假设假设矛盾。

举个例子

现在,给出一个连通图:

众所周知,这样一给连通网的最小生成树为:

那么可以按照如下方式对MST进行证明:

带你理解MST性质的更多相关文章

  1. 一个故事带你理解if __name__ == '__main__'

    如果你刚刚接触python,相信会在看别人的程序的时候会遇到if __name__ == '__main__'酱紫的语法,如果当时没看懂现在也一知半解的话,看下去,本文可以帮你解决这个问题. 大家都知 ...

  2. JDK1.8源码逐字逐句带你理解LinkedHashMap底层

    注意 我希望看这篇的文章的小伙伴如果没有了解过HashMap那么可以先看看我这篇文章:http://blog.csdn.net/u012403290/article/details/65442646, ...

  3. [转帖]从零开始入门 K8s | 手把手带你理解 etcd

    从零开始入门 K8s | 手把手带你理解 etcd https://zhuanlan.zhihu.com/p/96721097 导读:etcd 是用于共享配置和服务发现的分布式.一致性的 KV 存储系 ...

  4. 手摸手带你理解Vue的Computed原理

    前言 computed 在 Vue 中是很常用的属性配置,它能够随着依赖属性的变化而变化,为我们带来很大便利.那么本文就来带大家全面理解 computed 的内部原理以及工作流程. 在这之前,希望你能 ...

  5. 手摸手带你理解Vue的Watch原理

    前言 watch 是由用户定义的数据监听,当监听的属性发生改变就会触发回调,这项配置在业务中是很常用.在面试时,也是必问知识点,一般会用作和 computed 进行比较. 那么本文就来带大家从源码理解 ...

  6. 转: 带你玩转Visual Studio——带你理解多字节编码与Unicode码

    上一篇文章带你玩转Visual Studio——带你跳出坑爹的Runtime Library坑帮我们理解了Windows中的各种类型C/C++运行时库及它的来龙去脉,这是C++开发中特别容易误入歧途的 ...

  7. 手把手带你理解style

    在写代码的时候,经常遇到自定义的style,有的用来设置属性,有的用来设置主题,搞的自己云里雾里,因此在心底暗暗发誓,等到空闲的时候,一定好好学学android中的style的究竟是个什么东西,到底有 ...

  8. 从底层带你理解Python中的一些内部机制

    下面博文将带你创建一个字节码级别的追踪API以追踪Python的一些内部机制,比如类似YIELDVALUE.YIELDFROM操作码的实现,推式构造列表(List Comprehensions).生成 ...

  9. 带你玩转Visual Studio——带你理解多字节编码与Unicode码

    目录(?)[-] 多字节字符与宽字节字符 char与wchar_t string与wstring string 与 wstring的相关转换 字符集Charcater Set与字符编码Encoding ...

随机推荐

  1. python多线程与threading模块

    python多线程与_thread模块 中介绍了线程的基本概念以及_thread模块的简单示例.然而,_thread模块过于简单,使得我们无法用它来准确地控制线程,本文介绍threading模块,它提 ...

  2. P4323-[JSOI2016]独特的树叶【换根dp,树哈希】

    正题 题目链接:https://www.luogu.com.cn/problem/P4323 题目大意 给出\(n\)个点的树和加上一个点之后的树(编号打乱). 求多出来的是哪个点(如果有多少个就输出 ...

  3. P4292-[WC2010]重建计划【长链剖分,线段树,0/1分数规划】

    正题 题目链接:https://www.luogu.com.cn/problem/P4292 题目大意 给出\(n\)个点的一棵树,然后求长度在\([L,U]\)之间的一条路径的平均权值最大. 解题思 ...

  4. Java面向对象编程(二)

    关键字 -- this 一.this关键字的使用: 1.this可以用来修饰.调用:属性.方法.构造器. 2.this修饰属性和方法: this理解为:当前对象 或 当前正在创建的对象. 2.1 在类 ...

  5. mybatis 配置问题查找

    mybatis配置问题记录 org.apache.ibatis.binding.BindingException: Type interface com.xx.dao.UserDao(自己项目的文件) ...

  6. Electron+Vue+ElementUI开发环境搭建

    Node环境搭建 本文假定你完成了nodejs的环境基础搭建: 镜像配置(暂时只配置node包镜像源,部分包的二进制镜像源后续讨论).全局以及缓存路径配置,全局路径加入到了环境变量 $ node -v ...

  7. 随机生成文章的AI(C++)

    #include <iostream> #include <cstdlib> #include <ctime> #include <fstream> u ...

  8. 2021.1.28--vj补题

    B - B CodeForces - 994B 题内容: Unlike Knights of a Round Table, Knights of a Polygonal Table deprived ...

  9. 【NXOpen.UF扩展】修改表达式

    public static class UFExpEx { /// <summary> /// 修改当前部件的表达式 /// </summary> /// <param ...

  10. vue3双向数据绑定原理_demo

    <!DOCTYPE html> <head> <meta charset="UTF-8" /> <meta name="view ...