作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/partition-to-k-equal-sum-subsets/description/

题目描述

Given an array of integers nums and a positive integer k, find whether it’s possible to divide this array into k non-empty subsets whose sums are all equal.

Example 1:

Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.

Note:

  1. 1 <= k <= len(nums) <= 16.
  2. 0 < nums[i] < 10000.

题目大意

判断一个数组是否可以分成k组,每组的和相等。

解题方法

回溯法

这是一个套题,和416. Partition Equal Subset Sum473. Matchsticks to Square基本一致的代码,上面的两个题分别是求平分成2份和4份。这个是任意的k份。所以改成了k组数字记录的div,最后看是否能够正好进行平分。

直接使用回溯法即可,这个回溯的要求是恰好把nums的所有数字用过一遍,使得目标数组中恰好有k个相同数字。当所有的数字恰好用完的时候,就是我们平分的时候,即可返回true。题目给出的数字范围只到16,所以本算法时间复杂度是O(N!),仍然能通过。

这里要证明,为什么只需要判断恰好用完即可返回true。因为我们所有数字的和是确定的,即sum(target) = div * k = sum(nums)。如果我们在每个位置放数字的时候,保证了放置的数字<=该位置的数字,即保证了在最终状态的target[i]>=0。此时有sum(target) >= 0。又已知所有数字恰好用完,所以恰好有sum(target) = 0。故,当所有数字恰好用完时,target的每个位置都是0.

Python代码:

class Solution:
def canPartitionKSubsets(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: bool
"""
if not nums or len(nums) < k: return False
_sum = sum(nums)
div, mod = divmod(_sum, k)
if _sum % k or max(nums) > _sum / k: return False
nums.sort(reverse = True)
target = [div] * k
return self.dfs(nums, k, 0, target) def dfs(self, nums, k, index, target):
if index == len(nums): return True
num = nums[index]
for i in range(k):
if target[i] >= num:
target[i] -= num
if self.dfs(nums, k, index + 1, target): return True
target[i] += num
return False

C++代码如下:

class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
if (nums.size() < k) return false;
int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % k != 0) return false;
vector<int> target(k, sum / k);
return helper(nums, 0, target);
} bool helper(vector<int>& nums, int index, vector<int>& target) {
if (index == nums.size()) return true;
int num = nums[index];
for (int i = 0; i < target.size(); ++i) {
if (target[i] >= num) {
target[i] -= num;
if (helper(nums, index + 1, target))
return true;
target[i] += num;
}
}
return false;
}
};

另外一种Python解法定义的dfs()函数的意义是使用nums[ind:]能不能构成k个和分别为self.target的数字,因为这种做法会反复遍历nums,而不像上面这种做法只用遍历一次,所以这个做法需要用visited数组,表示nums[i]数字是否已经使用过。

class Solution(object):
def canPartitionKSubsets(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: bool
"""
if k == 1: return True
self.n = len(nums)
if self.n < k: return False
total = sum(nums)
if total % k: return False
self.target = total / k
visited = [0] * self.n
nums.sort(reverse = True)
def dfs(k, ind, sum, cnt):
if k == 1: return True
if sum == self.target and cnt > 0:
return dfs(k - 1, 0, 0, 0)
for i in range(ind, self.n):
if not visited[i] and sum + nums[i] <= self.target:
visited[i] = 1
if dfs(k, i + 1, sum + nums[i], cnt + 1):
return True
visited[i] = 0
return False
return dfs(k, 0, 0, 0)

日期

2018 年 4 月 2 日 —— 要开始准备ACM了
2019 年 2 月 24 日 —— 周末又结束了

【LeetCode】698. Partition to K Equal Sum Subsets 解题报告(Python & C++)的更多相关文章

  1. [LeetCode] 698. Partition to K Equal Sum Subsets

    Problem Given an array of integers nums and a positive integer k, find whether it's possible to divi ...

  2. 【leetcode】698. Partition to K Equal Sum Subsets

    题目如下: 解题思路:本题是[leetcode]473. Matchsticks to Square的姊妹篇,唯一的区别是[leetcode]473. Matchsticks to Square指定了 ...

  3. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  4. 698. Partition to K Equal Sum Subsets 数组分成和相同的k组

    [抄题]: Given an array of integers nums and a positive integer k, find whether it's possible to divide ...

  5. [LeetCode] Partition to K Equal Sum Subsets 分割K个等和的子集

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  6. LeetCode Partition to K Equal Sum Subsets

    原题链接在这里:https://leetcode.com/problems/partition-to-k-equal-sum-subsets/description/ 题目: Given an arr ...

  7. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  8. [Swift]LeetCode698. 划分为k个相等的子集 | Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  9. 【LeetCode】364. Nested List Weight Sum II 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcode ...

随机推荐

  1. cp -拷贝文件出现错误

    对于cp -a最主要的用法是在保留原文件属性的前提下复制文件. 如果出现了拷贝文件错误,在文件前面加上-a 即可

  2. java四则运算规则

    java四则运算规则 1.基本规则 运算符:进行特定操作的符号.例如:+ 表达式:用运算符连起来的式子叫做表达式.例如:20 + 5.又例如:a + b 四则运算: 加:+ 减:- 乘:* 除:/ 取 ...

  3. Yarn 容量调度器多队列提交案例

    目录 Yarn 容量调度器多队列提交案例 需求 配置多队列的容量调度器 1 修改如下配置 SecureCRT的上传和下载 2 上传到集群并分发 3 重启Yarn或yarn rmadmin -refre ...

  4. vmware使用nat连接配置

    一.首先查看自己的虚拟机服务有没有开启,选择电脑里面的服务查看: 1.计算机点击右键选择管理  2.进入管理选择VM开头的服务如果没有开启的话就右键开启  二.虚拟机服务开启后就查看本地网络虚拟机的网 ...

  5. [项目总结]关于调用系统照相机Activity被销毁问题解决

    在项目中需要启用系统照相机来拍照.本来很容易的一个问题.但在适配中出现了问题. 简单说一下问题: 有些手机拍照成功,有些手机拍完照后确定返回后activity数据丢失,被销毁了. 问题查找: 经过代码 ...

  6. java生成cron表达式

    bean类: package com.cst.klocwork.service.cron; public class TaskScheduleModel { /** * 所选作业类型: * 1 -&g ...

  7. springboot+vue集成mavon-editor,开发在线文档知识库

    先睹为快,来看下效果: 技术选型 SpringBoot.Spring Security.Oauth2.Vue-element-admin 集成mavon-editor编辑器 安装 mavon-edit ...

  8. Linux上Zookeeper集群搭建

    一.官网 https://zookeeper.apache.org/ 二.下载安装 (1)下载 复制链接地址  http://mirror.bit.edu.cn/apache/zookeeper/zo ...

  9. 安装Redis5.0.8教程图解

    文档:安装Redis5.0.8教程图解.note 链接:http://note.youdao.com/noteshare?id=737620a0441724783c3f8ef14ab8a453& ...

  10. SpringCloud微服务实战——搭建企业级开发框架(三十三):整合Skywalking实现链路追踪

      Skywalking是由国内开源爱好者吴晟(原OneAPM工程师)开源并提交到Apache孵化器的产品,它同时吸收了Zipkin/Pinpoint/CAT的设计思路,支持非侵入式埋点.是一款基于分 ...