Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】
正题
题目链接:https://ac.nowcoder.com/acm/contest/161/F
题目大意
给出\(n\)个点的一张图,求它的所有生成树中权值和为\(k\)的倍数的个数。输出答案对\(p\)取模
\(1\leq n,k\leq 100,1\leq m\leq 10^4,p\in[2,10^9]\cup Pri\)
数据保证\(k\equiv 1(mod\ p)\)
解题思路
一个想法是把一条边权看做\(x^w\)的多项式,用矩阵树定理乘起来后\(k\)的倍数的系数和就是答案。
但是这样系数是\(nk\)个,显然搞不定。
类似于CF917D-StrangerTree的做法我们可以带入若干个值然后跑矩阵数之后求出若干个点值。
但是这里是\(k\)的倍数,我们要模拟卷积,可以带入\(k\)个\(g\)满足\(g^k=1\)的就可以了。
这里保证了\(k\equiv 1(mod\ p)\),所以我们求出\(p\)的原根\(g\)然后带入\(g^{\frac{p-1}{k}\times i}(i\in[0,k-1])\)就可以了。
然后直接拉插求出\(x=0\)的点值就好了。
时间复杂度\(O(n^3k)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
using namespace std;
const ll N=110;
struct node{
ll x,y,w;
}e[N*N];
ll n,m,k,P,g,x[N],y[N];
vector<ll> p;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void Prime(){
ll x=P-1;
for(ll i=2;i*i<=x;i++)
if(x%i==0){
p.push_back(i);
while(x%i==0)x/=i;
}
if(x>1)p.push_back(x);
}
bool check(ll x){
for(ll i=0;i<p.size();i++)
if(power(x,(P-1)/p[i])==1)return 0;
return 1;
}
namespace Matrix{
ll a[N][N];
ll det(ll v){
memset(a,0,sizeof(a));
ll ans=1;
for(ll i=1;i<=m;i++){
ll x=e[i].x,y=e[i].y,w=power(v,e[i].w);
(a[x][y]+=P-w)%=P;(a[y][x]+=P-w)%=P;
(a[x][x]+=w)%=P;(a[y][y]+=w)%=P;
}
ll f=0;
for(ll i=1;i<n;i++){
for(ll j=i;j<n;j++)
if(a[j][i]){
if(i==j)break;
swap(a[i],a[j]);
f^=1;break;
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<n;k++)
(a[j][k]+=rate*a[i][k])%=P;
}
}
return f?(P-ans):ans;
}
}
signed main()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&P);
Prime();g=1;
while(!check(g))
g++;
for(ll i=1;i<=m;i++)
scanf("%lld%lld%lld",&e[i].x,&e[i].y,&e[i].w);
for(ll i=1;i<=k;i++){
x[i]=power(g,(P-1)/k*(i-1));
y[i]=Matrix::det(x[i]);
}
ll ans=0;
for(ll i=1;i<=k;i++){
ll tmp=1;
for(ll j=1;j<=k;j++)
if(i!=j)tmp=tmp*(P-x[j])%P*power(x[i]-x[j],P-2)%P;
(ans+=tmp*y[i]%P)%=P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}
Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】的更多相关文章
- 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)
传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...
随机推荐
- Dapps-是一个跨平台的应用服务商店
简介 Dapps 是一个跨平台的应用商店,包含众多软件,基于docker dapps是什么? 它是一个应用程序商店,包含丰富的软件,因为基于docker,使你本机电脑有云开发的效果. 一键安装程序:多 ...
- C#多线程详解(二)
在上一节介绍了线程的基础知识,下面来研究多线程的优先级 using System; using System.Threading;namespace Test{ class TestThread ...
- [SWMM]出现问题及解决
1,节点顺序 [错误]:如下图,在SWMM软件中普通节点到出水口的连接线不能正常连接,提示找不到出水口节点,但在inp文件中是存在的! [解决]:需要先写入点节点再写入线节点,即先写入[JUNCTIO ...
- 将svn项目导出,再导入到其他工作空间
方法一: 对于一致svn地址,本地没有的项目,直接eclipse中svn检出即可. 若本地有项目,但想导入到另一个工作空间(即拷贝一份,不想再从svn拉),则需要用export方法. 方法二(expo ...
- vue 优化hash持久化缓存
公司用的是vue最近在学习react的打包时发现react会额外生成一个runtimeChunk,不知道具体原因所以查资料学习了下, 这里是runtime的功能,文章地址:https://sebast ...
- 登录用户出现‘’-bash-4.2$‘’的问题解决
Linux系统切换用户时如显示的是-bash-4.2# 而不是user@主机名 + 路径的显示方式,以往一直用的脚本也不能执行起来: 原因是在用useradd添加普通用户时,有时会丢失家目录下的环境变 ...
- 代码保留格式(高亮)复制到Word(转载)
将代码保持高亮复制粘贴到word上,一些方法如下: 方法一:借助网站http://www.planetb.ca/syntax-highlight-word/(代码有编号,整体排版精美令人舒适,但语言有 ...
- 机械硬盘换到SSD后系统引导报错代码0xc000000e
由于机械硬盘IO不够用,系统使用起来非常的缓慢,特意购买了新的SSD进行了替换.机械硬盘的IO在70左右,SSD的IO在1000-4000左右指普通消费SSD. 由于不想安装系统,就直接把机械硬盘的数 ...
- Mysql常用sql语句(15)- cross join 交叉连接
测试必备的Mysql常用sql语句 https://www.cnblogs.com/poloyy/category/1683347.html 前言 交叉连接就是求多表之间的笛卡尔积 讲道理..这个我都 ...
- Golang入门学习(四):常用的函数汇总
文章目录 2.4 常用的内置函数 2.4.1 字符串常用内置函数 2.4.2 常用的时间和日期相关函数 2.4.3 内置函数 2.4 常用的内置函数 2.4.1 字符串常用内置函数 https://g ...