Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】
正题
题目链接:https://ac.nowcoder.com/acm/contest/161/F
题目大意
给出\(n\)个点的一张图,求它的所有生成树中权值和为\(k\)的倍数的个数。输出答案对\(p\)取模
\(1\leq n,k\leq 100,1\leq m\leq 10^4,p\in[2,10^9]\cup Pri\)
数据保证\(k\equiv 1(mod\ p)\)
解题思路
一个想法是把一条边权看做\(x^w\)的多项式,用矩阵树定理乘起来后\(k\)的倍数的系数和就是答案。
但是这样系数是\(nk\)个,显然搞不定。
类似于CF917D-StrangerTree的做法我们可以带入若干个值然后跑矩阵数之后求出若干个点值。
但是这里是\(k\)的倍数,我们要模拟卷积,可以带入\(k\)个\(g\)满足\(g^k=1\)的就可以了。
这里保证了\(k\equiv 1(mod\ p)\),所以我们求出\(p\)的原根\(g\)然后带入\(g^{\frac{p-1}{k}\times i}(i\in[0,k-1])\)就可以了。
然后直接拉插求出\(x=0\)的点值就好了。
时间复杂度\(O(n^3k)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
using namespace std;
const ll N=110;
struct node{
ll x,y,w;
}e[N*N];
ll n,m,k,P,g,x[N],y[N];
vector<ll> p;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void Prime(){
ll x=P-1;
for(ll i=2;i*i<=x;i++)
if(x%i==0){
p.push_back(i);
while(x%i==0)x/=i;
}
if(x>1)p.push_back(x);
}
bool check(ll x){
for(ll i=0;i<p.size();i++)
if(power(x,(P-1)/p[i])==1)return 0;
return 1;
}
namespace Matrix{
ll a[N][N];
ll det(ll v){
memset(a,0,sizeof(a));
ll ans=1;
for(ll i=1;i<=m;i++){
ll x=e[i].x,y=e[i].y,w=power(v,e[i].w);
(a[x][y]+=P-w)%=P;(a[y][x]+=P-w)%=P;
(a[x][x]+=w)%=P;(a[y][y]+=w)%=P;
}
ll f=0;
for(ll i=1;i<n;i++){
for(ll j=i;j<n;j++)
if(a[j][i]){
if(i==j)break;
swap(a[i],a[j]);
f^=1;break;
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<n;k++)
(a[j][k]+=rate*a[i][k])%=P;
}
}
return f?(P-ans):ans;
}
}
signed main()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&P);
Prime();g=1;
while(!check(g))
g++;
for(ll i=1;i<=m;i++)
scanf("%lld%lld%lld",&e[i].x,&e[i].y,&e[i].w);
for(ll i=1;i<=k;i++){
x[i]=power(g,(P-1)/k*(i-1));
y[i]=Matrix::det(x[i]);
}
ll ans=0;
for(ll i=1;i<=k;i++){
ll tmp=1;
for(ll j=1;j<=k;j++)
if(i!=j)tmp=tmp*(P-x[j])%P*power(x[i]-x[j],P-2)%P;
(ans+=tmp*y[i]%P)%=P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}
Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】的更多相关文章
- 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)
传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...
随机推荐
- 手把手教你AspNetCore WebApi:Swagger(Api文档)
前言 小明已经实现"待办事项"的增删改查,并美滋滋向负责前端的小红介绍Api接口,小红很忙,暂时没有时间听小明介绍,希望小明能给个Api文档.对于码农小明来说能不写文档就尽量不要写 ...
- WPF设计自定义控件
在实际工作中,WPF提供的控件并不能完全满足不同的设计需求.这时,需要我们设计自定义控件. 这里LZ总结一些自己的思路,特性如下: Coupling UITemplate Behaviour Func ...
- 【springcloud】springcloud Greenwich SR4版本笔记
springcloud Greenwich SR4版本笔记 本文只记录实际版本,配置,pom,代码以及注意事项.别的在其他springcloud 的F版本中已有详述. 示例代码地址:https://g ...
- long ? 的使用和理解
Dictionary<string, object> dic = new Dictionary<string, object>(); long lg = 12345; dic[ ...
- BootstrapTable插件的使用 【转】
一.什么是Bootstrap-table? 在业务系统开发中,对表格记录的查询.分页.排序等处理是非常常见的,在Web开发中,可以采用很多功能强大的插件来满足要求,且能极大的提高开发效率,本随笔介绍这 ...
- mysql基础操作(一):DDL、DML
-- 1.在命令行中开启数据库: net start mysql -- 2.在命令行中关闭数据库: net stop mysql 1.DDL语句:create.drop.alter -- 查看所有的数 ...
- JAVA中直接用Jdbc就能操作数据库了,为什么还要用spring框架?
不过随着业务的扩展,你就会发现jdbc建立一个连接居然要几百毫秒,而执行一个普通的SQL仅仅需要几毫秒. 这么重量级的资源建立了就释放了不合适,得找个容器存起来,谁要就来取,不用了就还给容器,毕竟容器 ...
- nginx 开启,关闭,重启
2021-08-191. 启动 # 判断配置文件是否正确 cd /usr/local/nginx/sbin ./nginx -t # 启动 cd usr/local/nginx/sbin ./ngin ...
- Packing问题
问题描述:如何把任意数量任意尺寸矩形集无重复的放到一个面积最小的封闭矩形中. 算法思想:(为了便于描述,把要找的封闭矩形记为a,封闭矩形的集合记为as,把矩形集合记为rs,n为rs中矩形的个数,把可以 ...
- GUI常用监听事件
概念 对鼠标.键盘等一系列事件做出相应的反馈 事件监听 //创建监听事件 public class Demo { public static void main(String[] args) { Fr ...