常用的几款消息队列的对比

前言

消息队列的作用:

1、应用耦合:多应用间通过消息队列对同一消息进行处理,避免调用接口失败导致整个过程失败;

2、异步处理:多应用对消息队列中同一消息进行处理,应用间并发处理消息,相比串行处理,减少处理时间;

3、限流削峰:广泛应用于秒杀或抢购活动中,避免流量过大导致应用系统挂掉的情况;

4、消息驱动的系统:系统分为消息队列、消息生产者、消息消费者,生产者负责产生消息,消费者(可能有多个)负责对消息进行处理;

首先选择消息队列要满足以下几个条件:

1、开源

2、流行

3、兼容性强

消息队列需要:

1、消息的可靠传递:确保不丢消息;

2、Cluster:支持集群,确保不会因为某个节点宕机导致服务不可用,当然也不能丢消息;

3、性能:具备足够好的性能,能满足绝大多数场景的性能要求。

RabbitMQ

RabbitMQ 2007年发布,是一个在 AMQP (高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。

优点

1、RabbitMQ 的特点 Messaging that just works,“开箱即用的消息队列”。 RabbitMQ 是一个相对轻量的消息队列,非常容易部署和使用;

2、多种协议的支持:支持多种消息队列协议,算的上是最流行的消息队列之一;

3、灵活的路由配置,和其他消息队列不同的是,它在生产者 (Producer)和队列(Queue)之间增加了一个Exchange模块,你可以理解为交换机。这个Exchange模块的作用和交换机也非常相似,根据配置的路由规则将生产者发出的消息分发到不同的队 列中。路由的规则也非常灵活,甚至你可以自己来实现路由规则。

4、健壮、稳定、易用、跨平台、支持多种语言、文档齐全,RabbitMQ的客户端支持的编程语言大概是所有消息队列中最多的;

5、管理界面较丰富,在互联网公司也有较大规模的应用;

6、社区比较活跃。

缺点

1、RabbitMQ 对消息堆积的处理不好,在它的设计理念里面,消息队列是一个管道,大量的消息积压是一种不正常的情况,应当尽量去避免。当大量消息积压的时候,会导致RabbitMQ的性能急剧下降;

2、性能上有瓶颈,它大概每秒钟可以处理几万到十几万条消息,这个对于大多数场景足够使用了,如果对需求对性能要求非常高,那么就不太合适了。

3、RabbitMQ 使用 Erlang。开发,Erlang 的学习成本还是很高的,如果后期进行二次开发,就不太容易了。

RocketMQ

RocketMQ出自阿里公司的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进,消息可靠性上比 Kafka 更好。经历过多次双十一的考验,性能和稳定性还是值得信赖的,RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。

优点

1、单机吞吐量:十万级;

2、可用性:非常高,分布式架构;

3、消息可靠性:经过参数优化配置,消息可以做到0丢失,RocketMQ 的所有消息都是持久化的,先写入系统 PAGECACHE,然后刷盘,可以保证内存与磁盘都有一份数据;

4、功能支持:MQ功能较为完善,还是分布式的,扩展性好;

5、支持10亿级别的消息堆积,不会因为堆积导致性能下降;

6、源码是java,我们可以自己阅读源码,定制自己公司的MQ,可以掌控。

缺点

1、支持的客户端语言不多,目前是 java 及 c++,其中 c++ 不成熟;

2、社区活跃度一般,作为国产的消息队列,相比国外的比较流行的同类产品,在国际上还没有那么流行,与周边生态系统的集成和兼容程度要略逊一筹;

3、没有在 mq 核心中去实现 JMS 等接口,有些系统要迁移需要修改大量代码。

Kafka

Apache Kafka是一个分布式消息发布订阅系统。它最初由LinkedIn公司基于独特的设计实现为一个分布式的提交日志系统( a distributed commit log),之后成为Apache项目的一部分。

这是一款为大数据而生的消息中间件,在数据采集、传输、存储的过程中发挥着举足轻重的作用。

优点

1、性能卓越,单机写入TPS约在百万条/秒,最大的优点,就是吞吐量高;

2、性能卓越,单机写入TPS约在百万条/秒,消息大小10个字节;

3、可用性:非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用;

4、消费者采用Pull方式获取消息, 消息有序, 通过控制能够保证所有消息被消费且仅被消费一次;

5、有优秀的第三方Kafka Web管理界面Kafka-Manager;

6、在日志领域比较成熟,被多家公司和多个开源项目使用;

7、功能支持:功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用

缺点

由于“攒一波再处理”导致延迟比较高

如何选择合适的消息队列

如果对于消息队列的功能和性能要求不是很高,那么RabbitMQ就够了,开箱即用。

如果系统使用消息队列主要场景是处理在线业务,比如在交易系统中用消息队列传递订单,RocketMQ 的低延迟和金融级的稳定性就可以满足。

要处理海量的消息,像收集日志、监控信息或是前端的埋点这类数据,或是你的应用场景大量使用 了大数据、流计算相关的开源产品,那 Kafka 就是最合适的了。

参考

【消息队列及常见消息队列介绍】https://cloud.tencent.com/developer/article/1006035

【消息队列高手课】https://time.geekbang.org/column/intro/100032301

【消息队列Kafka、RocketMQ、RabbitMQ的优劣势比较】https://zhuanlan.zhihu.com/p/60288391

【Kafka】https://zh.wikipedia.org/wiki/Kafka

【RabbitMQ,RocketMQ,Kafka 几种消息队列的对比】https://boilingfrog.github.io/2021/12/10/几种常见的消息队列的对比/

RabbitMQ,RocketMQ,Kafka 几种消息队列的对比的更多相关文章

  1. Kafka与常见消息队列的对比

    Kafka与常见消息队列的对比 RabbitMQ Erlang编写 支持很多的协议:AMQP,XMPP, SMTP, STOMP 非常重量级,更适合于企业级的开发 发送给客户端时先在中心队列排队.对路 ...

  2. MQ选型对比ActiveMQ,RabbitMQ,RocketMQ,Kafka 消息队列框架选哪个?

    最近研究消息队列,发现好几个框架,搜罗一下进行对比,说一下选型说明: 1)中小型软件公司,建议选RabbitMQ.一方面,erlang语言天生具备高并发的特性,而且他的管理界面用起来十分方便.不考虑r ...

  3. RabbitMQ入门教程(十七):消息队列的应用场景和常见的消息队列之间的比较

    原文:RabbitMQ入门教程(十七):消息队列的应用场景和常见的消息队列之间的比较 分享一个朋友的人工智能教程.比较通俗易懂,风趣幽默,感兴趣的朋友可以去看看. 这是网上的一篇教程写的很好,不知原作 ...

  4. Kafka介绍与消息队列

    消息队列的好处: 消息队列(Message Queue) 消息: 网络中的两台计算机或者两个通讯设备之间传递的数据.例如说:文本.音乐.视频等内容. 队列:一种特殊的线性表(数据元素首尾相接),特殊之 ...

  5. 消息队列性能对比——ActiveMQ、RabbitMQ与ZeroMQ(译文)

    Dissecting Message Queues 概述: 我花了一些时间解剖各种库执行分布式消息.在这个分析中,我看了几个不同的方面,包括API特性,易于部署和维护,以及性能质量..消息队列已经被分 ...

  6. 第1节 kafka消息队列:1、kafka基本介绍以及与传统消息队列的对比

    1. Kafka介绍 l  Apache Kafka是一个开源消息系统,由Scala写成.是由Apache软件基金会开发的一个开源消息系统项目. l  Kafka最初是由LinkedIn开发,并于20 ...

  7. RabbitMQ系列二(构建消息队列)

    从AMQP协议可以看出,MessageQueue.Exchange和Binding构成了AMQP协议的核心.下面我们就围绕这三个主要组件,从应用使用的角度全面的介绍如何利用RabbitMQ构建消息队列 ...

  8. Rabbit五种消息队列学习(一) – 总述

    RabbitMQ支持五种消息传递类型,分别如下图所示: 上图中显示6中消息队列分别为: 1.简单队列 一个生产者将消息放到队列中,一个消费者监听队列 2.工作队列(Work queues) 一个生产者 ...

  9. RocketMQ读书笔记5——消息队列的核心机制

    [Broker简述] Broker是RocketMQ的核心,大部分“重量级”的工作都是由Broker完成的,包括: 1.接受Producer发过来的消息: 2.处理Consumer的消费信息请求: 3 ...

随机推荐

  1. [luogu4718]Pollard-Rho算法

    模板题 题解主要分为两部分,即Miller-Robin判素数以及关于Pollard-Rho算法 1.Miller-Robin判素数 对于一个数$n$,判定其是否为素数,依次执行以下几步-- (1)若$ ...

  2. 【GitHub】本地代码上传

    本地代码上传GitHub 2019-11-18  20:03:45  by冲冲 1.注册GitHub https://github.com/ 2.安装Git工具 https://git-for-win ...

  3. CSS-sprit 雪碧图

    CSS-sprit 雪碧图  可以将 多个小图片统一保存到一个大图片中,然后通过调整background-position来显示响应的图片        这样图片会同时加载到网页中 就可以避免出现闪烁 ...

  4. CF1559D2 Mocha and Diana (Hard Version)

    考虑到加树边每次最多只导致一对联通块之间的状态. 所以我们以任意顺序加入当前的合法边. 我们考虑先加入所有可加的\((1,a)\) 然后统计只在\(A\)中与1连的点,\(B\)中与2连的点. 则他们 ...

  5. CSP-S 2021 游记

    福兮祸之所伏 胜利是一种肯定,代表我应该在这条路上坚定不移地走下去. 胜利也是一种危机,它粉饰太平.养虎自齧,并把人最丑陋的一些想法暴露出来:虚荣心.骄傲心都在这个过程中被放大,懒惰心.自满心也找到了 ...

  6. R语言实战(第二版)-part 1笔记

    说明: 1.本笔记对<R语言实战>一书有选择性的进行记录,仅用于个人的查漏补缺 2.将完全掌握的以及无实战需求的知识点略去 3.代码直接在Rsudio中运行学习 R语言实战(第二版) pa ...

  7. Nginx在make时报错[objs/Makefile:469: objs/src/core/ngx_murmurhash.o] Error

    Nginx在make时报错[objs/Makefile:469: objs/src/core/ngx_murmurhash.o] Error   在安装目录下执行 vim obj/Markfile 把 ...

  8. Linux系统的开机启动顺序

    Linux系统的开机启动顺序加载BIOS–>读取MBR–>Boot Loader–>加载内核–>用户层init一句inittab文件来设定系统运行的等级(一般3或者5,3是多用 ...

  9. 多组学分析及可视化R包

    最近打算开始写一个多组学(包括宏基因组/16S/转录组/蛋白组/代谢组)关联分析的R包,避免重复造轮子,在开始之前随便在网上调研了下目前已有的R包工具,部分罗列如下: 1. mixOmics 应该是在 ...

  10. Spring Cloud 2021.0.0 正式发布,第一个支持Spring Boot 2.6的版本!

    美国时间12月2日,Spring Cloud 正式发布了第一个支持 Spring Boot 2.6 的版本,版本号为:2021.0.0,codename 为 Jubilee. 在了解具体更新内容之前, ...