bzoj 3143: [Hnoi2013]游走
Description
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
Input
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
Output
仅包含一个实数,表示最小的期望值,保留3位小数。
Sample Input
2 3
1 2
1 3
Sample Output
HINT
Source
实在是闲的没事做才把这个题做掉。。。
首先我们可以需要计算每条边被经过的概率,因为要总期望最小,那么要让经过概率高的边的权值小,sort一遍即可。。。
如何求一条边被经过的概率呢,设边(x,y),经过x的概率是g[x],经过y的概率是g[y],x的度数为du[x],y的度数为du[y]。。。
那么答案显然等于g[x]/du[x]+g[y]/du[x];
然后我们相当于是要求经过每个点的概率(因为到了n就停止,所以我们要求经过1-n-1的点的概率,经过n的概率为0)
那么显然g[x]=∑g[y]/du[y]。。。
然后我们发现这是一个转移有环的dp,我们可以通过高斯消元来解决,经过1的概率为1。。
然后得出解,那么再算出每条边经过的概率,然后sort一遍出解。。。
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=3000;
int n,m,head[N],nxt[300050],to[300050],cnt,du[N];
double a[N][N],v[300050];
void gauss() {
for(int i=1;i<=n;i++) {
int t=i;
while(!a[t][i]) t++;
if(i!=t) swap(a[t],a[i]);
double k=a[i][i];
for(int j=i;j<=n+1;j++) a[i][j]/=k;
for(int j=1;j<=n;j++)
if(j!=i&&a[j][i]) {
k=a[j][i];
for(int p=i;p<=n+1;p++) a[j][p]-=k*a[i][p];
}
}
}
void lnk(int x,int y){
du[x]++;du[y]++;
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
struct data{
int x,y;
}e[300050];
bool cmp(double a,double b){return a>b;}
int main(){
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){scanf("%d%d",&e[i].x,&e[i].y);lnk(e[i].x,e[i].y);}
n--;
for(int x=1;x<=n;x++){
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y!=n+1) a[x][y]=1.0/du[y];
}
a[x][x]=-1.0;
}
a[1][n+1]=-1.0;gauss();
for(int i=1;i<=m;i++) v[i]=a[e[i].x][n+1]/du[e[i].x]+a[e[i].y][n+1]/du[e[i].y];
sort(v+1,v+1+m,cmp);double ans=0;for(int i=1;i<=m;i++) ans+=v[i]*i;printf("%.3f\n",ans);
return 0;
}
bzoj 3143: [Hnoi2013]游走的更多相关文章
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- ●BZOJ 3143 [Hnoi2013]游走
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
随机推荐
- Could not resolve view with name '***' in servlet with name 'dispatcher'
今天在开发中遇到了一个问题,控制层使用的是SpringMVC框架. @RequestMapping("historyDetail") private String History( ...
- npm模块管理器入门
什么是 NPM npm 是 Node 官方提供的包管理工具,他已经成了 Node 包的标准发布平台,用于 Node 包的发布.传播.依赖控制.npm 提供了命令行工具,使你可以方便地下载.安装.升级. ...
- robotframework自动化系统:操作mysql数据库
随着项目自动化深入和不断完善,大部分功能都已经能完成了自动化的操作:但是在设备添加的时候,遇到了难题.添加设备的时候mac必须是服务器设备管理中已经存在的mac地址,且是没有关联或绑定用户的设备信息. ...
- H5+JS+JQuery+ECharts实现异步加载
这几天,看了一下ECharts官网的API和Demo发现很有意思,于是就利用模型预测产生的数据做一个伪实时的动态数据显示 . 首先,创建一个index.html的文件,我用的vscode打开的,进行编 ...
- 一个for循环打印二维数组
#include<stdio.h> #define MAXX 2 #define MAXY 3 void printarray() { ,,,,,}; ;i< MAXX*MAXY;i ...
- js实现关键词高亮显示 正则匹配
html 和ajax 部分就不写了,只需将需要匹配的文字传进去就可以了 比如匹配后台传回的字符串data.content中的关键词:直接调用: data.content = highLightKeyw ...
- 逆向实用干货分享,Hook技术第二讲,之虚表HOOK
逆向实用干货分享,Hook技术第二讲,之虚表HOOK 正好昨天讲到认识C++中虚表指针,以及虚表位置在反汇编中的表达方式,这里就说一下我们的新技术,虚表HOOK 昨天的博客链接: http://www ...
- 十招让Ubuntu 16.04用起来更得心应手(转)
ubuntu 16.04是一种长期支持版本(LTS),是Canonical承诺发布五年的更新版.也就是说,你可以让这个版本在电脑上运行五年! 这样一来,一开始就设置好显得特别重要.你应该确保你的软件是 ...
- angularJS简单调用接口,实现数组页面打印
相比较jquery ,angular对这种接口数据处理起来会方便的多.这里举例调用 中国天气网的api接口. 首先肯定要引入angular.js这个不多说 <link rel="sty ...
- ssm开发使用redis作为缓存,使用步骤
1.关于spring配置文件中对于redis的配置 <!-- redis配置 --> <bean id="jedisPoolConfig" class=" ...