本课主题

  • 打通 Spark 系统运行内幕机制循环流程

引言

通过 DAGScheduelr 面向整个 Job,然后划分成不同的 Stage,Stage 是從后往前划分的,执行的时候是從前往后执行的,每个 Stage 内部有一系列任務,前面有分享過,任务是并行计算啦,这是并行计算的逻辑是完全相同的,只不过是处理的数据不同而已,DAGScheduler 会以 TaskSet 的方式把我们一个 DAG 构造的 Stage 中的所有任务提交给底层的调度器 TaskScheduler,TaskScheduler 是一个接口,它作为接口的好处就是更具体的任务调到器藉耦合,这就 Spark 就可以运行在不同的调度模式上,包括可以让它运行在 Standalone、Yarn、Mesos。希望这篇文章能为读者带出以下的启发:

  • 了解 Spark 系统运行内幕机制循环流程

Spark 系统运行内幕机制循环流程

DAGScheduler 在提交 TaskSet 给底层的调度器的时候是面向接口 TaskScheduler的,这符合面向对象中依赖抽象而不依赖具体的原则,带来底层资源调度器的可插拔性。导致 Spark 可以运行在众多的资源调度器的模式上,例如 Standalone 、Yarn、Mesos、Local、EC2、其它自定义的资源调度器;在 Standalone 的模式下,我们聚焦于 TaskSchedulerImpl。它會通過 TaskSet Manager 來管理我們這個具体的任务。

TaskScheduler 的核心任务是提交 TaskSet 到集群运算并汇报结果

为 TaskSet 创建和维护一个 TaskSetManager 并追踪任务的本地性以及错误信息;遇到 Struggle 任务的时候会放到其他的节点进行重试;TaskScheduler 必须向 DAGScheduler 汇报执行情况,包括在 Shuffle 输出 lost 的时候报告 fetch failed 错误等信息;TaskScheduler 内部会握有 SchedulerBackend,它主要是负责管理 Executor 资源的,从 Standalone 的模式来讲具体实现是 SparkDeploySchedulerBackend; 下图是 SchedulerBackend 的源码

SparkDeploySchedulerBackend 专门收集 Worker 上的资源信息的。它会接受 Worker 向 Driver 注册的信息,而这个注册的时候其实就是 ExecutorBackend 启动的时候为我们当前应用程序准备的计算资源,但它是以进程为单位的。SparkDeploySchedulerBackend 在启动的时候构造 AppClient 实例并在该实例 start 的时候启动了 ClientEndpoint 这个消息循环体,ClientEndpoint 在启动的时候会向 Master 注册当前程序。

而 SparkDeploySchedulerBackend 的父类 CoraseGraninedExecutorBackend 在 start 的时候会实例化类型为 DriverEndpoint (这就是我们程序运行时候的经典的对象Driver,所以的Executor 启动时都需要向它注册) 的消息循环体,当 ExecutorBackend 启动的时候会发送 RegisterExecutor 信息向 DriverEndpoint 注册,此时 SparkDeploySchedulerBackend 就掌握了当前应用程序的计算资源,TaskScheduler 就是通过 SparkDeploySchedulerBackend 的计算资源来具体运行 Task。(SparkDeploySchedulerBackend 在整个应用程序起动一次就行啦)

SparkContext、DAGScheduler、TaskSchedulerImpl、SparkDeploySchedulerBackend 在应用程序起动的时候只实例化一次,应用程序存在期间始终存在这些对象;应用程序的总管是 DAGScheduler 和 TaskScheduler,SparkDeploySchedulerBackend 是帮助应用程序的 Task 获取具体的计算资源并把 Task 发送到集群中的。

总结

在SparkContext 实例化的时候调用 createTaskScheduler 来创建 TaskSchedulerImpl 和 SparkDeploySchedulerBackend 同时在 SparkContext 实例化的时候会调用TaskSchedulerImpl 的 start( )方法,在start( )方法中会调用 SparkDeploySchedulerBackend 的start( ),在该start( ) 方法中会创建AppClient 对象并调用AppClient 对象的start( ) 方法。在该 start( ) 方法中会创建 ClientEndpoint ,在创建 ClientEndpoint的时候会传入 Command 来指定具体为当前应用程序启动的 Executor 进程的入口类的名称为 CoraseGraninedExecutorBackend,然后ClientEndpoint 启动并通过 tryRegisterMaster 来注册当前的应用程序到 Master 中。 Master 接受到注册信息后如何可以运行程序,则会为该程序生产JobID 并通过schedule 来分配计算资源,具体计算资源的分配是通过应用程序运行方式、Memory、cores 等配置来决定的,最后Master 会发送指令给Worker。 Worker 中为当前应用程序分配计算资源时会首先分配 ExecutorRunner,ExecutorRunner 内部会通过 Thread 的方式构成 ProcessBuilder 来启动另外一个 JVM 进程。 这个 JVM 进程启动时候会加载的 main 方法 所在的类的名称就是在创建 ClientEndpoint 时传入的 Command 来指定具体名称为 CoraseGraninedExecutorBackend 的类 。 此时JVM 在通过ProcessBuilder 启动的时候获得CoraseGraninedExecutorBackend 后加载并调用其中的main 方法,在main 方法中会实例化 CoraseGraninedExecutorBackend 本身这个消息循环体,而CoraseGraninedExecutorBackend 在实例化的时候会通过回调onStart( ) 向DriverEndpoint 发送 RegisterExecutor 来注册当前的CoraseGraninedExecutorBackend,此时DriverEndpiont 收到该注册信息并保存了SparkDeploySchedulerBackend 实例的内存的数据结构中,这样Driver 就获得了计算资源!(具体的代码流程可以参考第28课:Spark天堂之门解密的博客)

參考資料

资料来源来至 DT大数据梦工厂 大数据传奇行动 第35课:打通Spark系统运行内幕机制循环流程

Spark源码图片取自于 Spark 1.6.3版本

[Spark内核] 第35课:打通 Spark 系统运行内幕机制循环流程的更多相关文章

  1. 打通 Spark 系统运行内幕机制循环流程

    本课主题 打通 Spark 系统运行内幕机制循环流程 引言 通过 DAGScheduelr 面向整个 Job,然后划分成不同的 Stage,Stage 是从后往前划分的,执行的时候是從前往后执行的,每 ...

  2. 35.Spark系统运行内幕机制循环流程

    一:TaskScheduler原理解密 1,  DAGScheduler在提交TaskSet给底层调度器的时候是面向接口TaskScheduler的,这符合面向对象中依赖抽象而不依赖的原则,带来底层资 ...

  3. [Spark内核] 第28课:Spark天堂之门解密

    本課主題 什么是 Spark 的天堂之门 Spark 天堂之门到底在那里 Spark 天堂之门源码鉴赏 引言 我说的 Spark 天堂之门就是SparkContext,这篇文章会从 SparkCont ...

  4. [Spark内核] 第32课:Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等

    本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者 ...

  5. [Spark内核] 第31课:Spark资源调度分配内幕天机彻底解密:Driver在Cluster模式下的启动、两种不同的资源调度方式源码彻底解析、资源调度内幕总结

    本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.Ta ...

  6. [Spark内核] 第33课:Spark Executor内幕彻底解密:Executor工作原理图、ExecutorBackend注册源码解密、Executor实例化内幕、Executor具体工作内幕

    本課主題 Spark Executor 工作原理图 ExecutorBackend 注册源码鉴赏和 Executor 实例化内幕 Executor 具体是如何工作的 [引言部份:你希望读者看完这篇博客 ...

  7. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  8. [Spark内核] 第29课:Master HA彻底解密

    本课主题 Master HA 解析 Master HA 解析源码分享 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... Master HA 解析 生产环境下一般 ...

  9. [Spark内核] 第30课:Master的注册机制和状态管理解密

    本課主題 Master 接收 Worker, Driver, Application Master 处理 Driver 狀态变换 Master 处理 Executor 狀态变换 [引言部份:你希望读者 ...

随机推荐

  1. Python 日期和时间操作

    Python提供了一个time 和calendar模块可以用于格式化日期和时间. 时间间隔是以秒为单位的浮点小数. 每个时间戳都是以自从1970年1月1日午夜(历元)经过了多长时间来表示. Pytho ...

  2. openstack-glance API 镜像管理的部分实现和样例

    感谢朋友支持本博客,欢迎共同探讨交流,因为能力和时间有限.错误之处在所难免.欢迎指正. 假设转载,请保留作者信息. 博客地址:http://blog.csdn.net/qq_21398167 原博文地 ...

  3. hihoCoder_二分·归并排序之逆序对

    一.题目 题目1 : 二分·归并排序之逆序对 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 在上一回.上上回以及上上上回里我们知道Nettle在玩<艦これ&g ...

  4. Office Add-in 架构和入门

    作者:陈希章 发表于2017年7月12日 前言 从2月26日开始写这个Office 365开发概览系列文章-- https://aka.ms/office365devguide,到现在已经有17篇文章 ...

  5. 后台返回json可能会出现的异常解析:java.lang.IllegalStateException: WRITER

    在使用filter做权限管理限制访问时,经常是在数据可以正确返回时,在后台日志中却有这个异常抛出,这个现象让人不禁想去一探究竟. 我要做的是在一个filter中拦截所有的请求,并且根据拿到的请求中的参 ...

  6. [CSS]第一项和最后一项样式

    列表项的第一项距离顶部0.2rem,最后一项距离底部0.5rem .item:first-child { padding-top: .2rem; } .item:last-child { paddin ...

  7. linux根目录扩容

    原来在ucloud上面买了一个服务器,结果根目录上面只有20G,/data挂载点下面有500G,没多久/根目录存储空间用完了,所以要扩展 linux的文件模式分为lvm模式和普通的非lvm模式,云服务 ...

  8. 【python】for循环

    >>> exp='welcom to python'>>> for i in exp: print(i,end=' ') w e l c o m t o p y t ...

  9. HTML基础教程-简介

    关于html5笔记前言 之前有在W3school学习过html5以及javascript.为了和大家一块学习,为了回顾这些遗忘的基础,现在我把之前自己整理的笔记共享给大家.希望大家共同进步. HTML ...

  10. 将自己的域名代理到Gitpages

    相信有很多程序员都有自己的域名,甚至很多人还有自己的服务器.去年我也买了半年的阿里云,在tomcat里面发war包,相当于一个正式的项目.但是很多前端程序员应该要求很简单,就是能将静态的html发布就 ...