1. 详解

STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\(Y_v\)分解为趋势分量(trend component)、周期分量(seasonal component)和余项(remainder component):

\[Y_v = T _v + S_v + R_v \quad v= 1, \cdots, N
\]

STL分为内循环(inner loop)与外循环(outer loop),其中内循环主要做了趋势拟合与周期分量的计算。假定\(T_v^{(k)}\)、\(S_v{(k)}\)为内循环中第k-1次pass结束时的趋势分量、周期分量,初始时\(T_v^{(k)} = 0\);并有以下参数:

  • \(n_{(i)}\)内层循环数,
  • \(n_{(o)}\)外层循环数,
  • \(n_{(p)}\)为一个周期的样本数,
  • \(n_{(s)}\)为Step 2中LOESS平滑参数,
  • \(n_{(l)}\)为Step 3中LOESS平滑参数,
  • \(n_{(t)}\)为Step 6中LOESS平滑参数。

每个周期相同位置的样本点组成一个子序列(subseries),容易知道这样的子序列共有共有\(n_(p)\)个,我们称其为cycle-subseries。内循环主要分为以下6个步骤:

  • Step 1: 去趋势(Detrending),减去上一轮结果的趋势分量,\(Y_v - T_v^{(k)}\);
  • Step 2: 周期子序列平滑(Cycle-subseries smoothing),用LOESS (\(q=n_{n(s)}\), \(d=1\))对每个子序列做回归,并向前向后各延展一个周期;平滑结果组成temporary seasonal series,记为$C_v^{(k+1)}, \quad v = -n_{(p)} + 1, \cdots, -N + n_{(p)} $;
  • Step 3: 周期子序列的低通量过滤(Low-Pass Filtering),对上一个步骤的结果序列\(C_v^{(k+1)}\)依次做长度为\(n_(p)\)、\(n_(p)\)、\(3\)的滑动平均(moving average),然后做LOESS (\(q=n_{n(l)}\), \(d=1\))回归,得到结果序列\(L_v^{(k+1)}, \quad v = 1, \cdots, N\);相当于提取周期子序列的低通量;
  • Step 4: 去除平滑周期子序列趋势(Detrending of Smoothed Cycle-subseries),\(S_v^{(k+1)} = C_v^{(k+1)} - L_v^{(k+1)}\);
  • Step 5: 去周期(Deseasonalizing),减去周期分量,\(Y_v - S_v^{(k+1)}\);
  • Step 6: 趋势平滑(Trend Smoothing),对于去除周期之后的序列做LOESS (\(q=n_{n(t)}\), \(d=1\))回归,得到趋势分量\(T_v^{(k+1)}\)。

外层循环主要用于调节robustness weight。如果数据序列中有outlier,则余项会较大。定义

\[h = 6 * median(|R_v|)
\]

对于位置为\(v\)的数据点,其robustness weight为

\[\rho_v = B(|R_v|/h)
\]

其中\(B\)函数为bisquare函数:

\[B(u) = \left \{
{
\matrix {
{(1-u^2)^2 } & {for \quad 0 \le u < 1} \cr
{ 0} & {for \quad u \ge 1} \cr
}
}
\right.
\]

然后每一次迭代的内循环中,在Step 2与Step 6中做LOESS回归时,邻域权重(neighborhood weight)需要乘以\(\rho_v\),以减少outlier对回归的影响。STL的具体流程如下:

outer loop:
计算robustness weight;
inner loop:
Step 1 去趋势;
Step 2 周期子序列平滑;
Step 3 周期子序列的低通量过滤;
Step 4 去除平滑周期子序列趋势;
Step 5 去周期;
Step 6 趋势平滑;

为了使得算法具有足够的robustness,所以设计了内循环与外循环。特别地,当\(n_{(i)}\)足够大时,内循环结束时趋势分量与周期分量已收敛;若时序数据中没有明显的outlier,可以将\(n_{(o)}\)设为0。

R提供STL函数,底层为作者Cleveland的Fortran实现。Python的statsmodels实现了一个简单版的时序分解,通过加权滑动平均提取趋势分量,然后对cycle-subseries每个时间点数据求平均组成周期分量:

def seasonal_decompose(x, model="additive", filt=None, freq=None, two_sided=True):
_pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x)
x = np.asanyarray(x).squeeze()
nobs = len(x)
...
if filt is None:
if freq % 2 == 0: # split weights at ends
filt = np.array([.5] + [1] * (freq - 1) + [.5]) / freq
else:
filt = np.repeat(1./freq, freq) nsides = int(two_sided) + 1
# Linear filtering via convolution. Centered and backward displaced moving weighted average.
trend = convolution_filter(x, filt, nsides)
if model.startswith('m'):
detrended = x / trend
else:
detrended = x - trend period_averages = seasonal_mean(detrended, freq) if model.startswith('m'):
period_averages /= np.mean(period_averages)
else:
period_averages -= np.mean(period_averages) seasonal = np.tile(period_averages, nobs // freq + 1)[:nobs] if model.startswith('m'):
resid = x / seasonal / trend
else:
resid = detrended - seasonal results = lmap(_pandas_wrapper, [seasonal, trend, resid, x])
return DecomposeResult(seasonal=results[0], trend=results[1],
resid=results[2], observed=results[3])

R版STL分解带噪音点数据的结果如下图:

data = read.csv("artificialWithAnomaly/art_daily_flatmiddle.csv")
View(data)
data_decomp <- stl(ts(data[[2]], frequency = 1440/5), s.window = "periodic", robust = TRUE)
plot(data_decomp)

statsmodels模块的时序分解的结果如下图:

import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
from date_utils import get_gran, format_timestamp dta = pd.read_csv('artificialWithAnomaly/art_daily_flatmiddle.csv',
usecols=['timestamp', 'value'])
dta = format_timestamp(dta)
dta = dta.set_index('timestamp')
dta['value'] = dta['value'].apply(pd.to_numeric, errors='ignore')
dta.value.interpolate(inplace=True)
res = sm.tsa.seasonal_decompose(dta.value, freq=288)
res.plot()
plt.show()

2. 参考资料

[1] Cleveland, Robert B., William S. Cleveland, and Irma Terpenning. "STL: A seasonal-trend decomposition procedure based on loess." Journal of Official Statistics 6.1 (1990): 3.

时序分解算法:STL的更多相关文章

  1. 网络KPI异常检测之时序分解算法

    时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识, ...

  2. 从时序异常检测(Time series anomaly detection algorithm)算法原理讨论到时序异常检测应用的思考

    1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关 ...

  3. 时间序列分解算法:STL

    1. 详解 STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\( ...

  4. 详细解说 STL 排序(Sort)

    0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...

  5. STL标准模板库(简介)

    标准模板库(STL,Standard Template Library)是C++标准库的重要组成部分,包含了诸多在计算机科学领域里所常见的基本数据结构和基本算法,为广大C++程序员提供了一个可扩展的应 ...

  6. STL的std::find和std::find_if

    std::find是用来查找容器元素算法,但是它只能查找容器元素为基本数据类型,如果想要查找类类型,应该使用find_if. 小例子: #include "stdafx.h" #i ...

  7. STL: unordered_map 自定义键值使用

    使用Windows下 RECT 类型做unordered_map 键值 1. Hash 函数 计算自定义类型的hash值. struct hash_RECT { size_t operator()(c ...

  8. C++ STL简述

    前言 最近要找工作,免不得要有一番笔试,今年好像突然就都流行在线笔试了,真是搞的我一塌糊涂.有的公司呢,不支持Python,Java我也不会,C有些数据结构又有些复杂,所以是时候把STL再看一遍了-不 ...

  9. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

随机推荐

  1. [Android FrameWork 6.0源码学习] ViewGroup的addView函数分析

    Android中整个的View的组装是采用组合模式. ViewGroup就相当与树根,各种Layout就相当于枝干,各种子View,就相当于树叶. 至于View类.我们就当它是个种子吧.哈哈! Vie ...

  2. 【原创】 Docker 中 运行 ASP.NET Core 站点

    一. 建立 .NetCore 项目  a.新建项目 b.选择项目类型 c.添加控制器 d.添加视图 e.修改默认请求 f.发布 二. 准备 CentOS 环境 a.准备虚拟机 b.安装 docker ...

  3. 使用Homebrew配置Java开发环境

    查询java brew cask search java 查看版本信息 brew cask info java 从官网下载并安装 JDK 8 brew cask install java 需要安装 J ...

  4. Python对象类型及其运算

    Python对象类型及其运算 基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份.一个类型.一个值 例: >>> a1 = ...

  5. Vijos 1040 高精度乘法

    描述 高精度乘法 输入:两行,每行表示一个非负整数(不超过10000位) 输出:两数的乘积. 样例1 样例输入1 99 101 样例输出1 9999 题解 这道题和之前的Vijos 1010 清帝之惑 ...

  6. mysql启动关闭的批处理,感觉很好用在其他论坛帖子上找到的,感谢分享

    最近用mysql的时间比较多,每次都在计算机管理工具下面去启动,感觉很麻烦,于是搜索了下果然有前辈已经做出了这些东西,今天收藏整理,mysql启动关闭的批处理感觉很好用在其他论坛帖子上找到的,感谢互联 ...

  7. bcp和load table

    使用BCP和LOAD TABLE联合完成Sybase IQ 的数据导出和导入工作.说明: 表(视图)GN_TEST只有两个字段,TIMEID和MSISDN, 导出时我用'|'作为字段分隔符,'& ...

  8. js如何获取样式?

    在某个项目中,我们经常会需要来获取某个元素的样式,比如说获取一个div的color:这样,新的问出现了, var style = box.style.width;console.log(style); ...

  9. C# Datatable.Select()用法简介

    dt为一个DataTable,以dt为例说明dt.select()方法的功能: 1.dt.Select() 获取所有行数 例:Datarow[] drs=dt.Select(); 此时drs为dt数据 ...

  10. PC-lint集成于SourceInsight 范例以及简单分析;提高代码的健壮性;

    写代码之际突然想起了pc-lint这个"古董级"的代码静态分析工具;   下午机房的服务器歇菜了,没法调试游戏,刚好抽出时间来研究一下pc-lint集成在SourceInsight ...